Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector

This article has been updated

Abstract

Legionella pneumophila, the causative bacterium for Legionnaires’ disease, hijacks host membrane trafficking for the maturation of the Legionella-containing vacuole (LCV). The LCV membrane mainly contains PtdIns4P, which is important for anchoring many secreted Legionella effectors onto the LCV. Here, we identify a cryptic functional domain (LepB_NTD) preceding the well-characterized RabGAP domain in the Legionella Dot/Icm type IV secretion system effector LepB. LepB_NTD alone is toxic to yeast and can disrupt the Golgi in mammalian cells. The crystal structure reveals an unexpected kinase fold and catalytic motif important for LepB_NTD function in eukaryotes. Cell biology-guided biochemical analyses uncovered a lipid kinase activity in LepB_NTD that specifically converts PtdIns3P into PtdIns(3,4)P2. PtdIns(3,4)P2 is efficiently hydrolysed into PtdIns4P by another Dot/Icm effector SidF that is known to possess phosphoinositide phosphatase activity. Consistently, SidF is capable of counteracting the cellular functions of LepB_NTD. Genetic analyses show a requirement for LepB kinase activity as well as lipid phosphatase activity of SidF for PtdIns4P biosynthesis on the LCV membrane. Our study identifies an unprecedented phosphatidylinositide 4-kinase activity from bacteria and highlights a sophisticated manipulation of host phosphoinositide metabolism by a bacterial pathogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of LepB_NTD, which can inhibit yeast growth and disrupt the Golgi structure in mammalian cells.
Figure 2: Crystal structure reveals that LepB_NTD is an active atypical kinase.
Figure 3: LepB_NTD functions as a phosphatidylinositide 4-kinase to convert PtdIns3P into PtdIns(3,4)P2.
Figure 4: LepB and SidF can function sequentially to synthesize PtdIns4P from PtdIns3P in vitro and in vivo.

Similar content being viewed by others

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. Asrat, S., de Jesús, D. A., Hempstead, A. D., Ramabhadran, V. & Isberg, R. R. Bacterial pathogen manipulation of host membrane trafficking. Annu. Rev. Cell Dev. Biol. 30, 79–109 (2014).

    Article  CAS  Google Scholar 

  2. Dong, N. et al. Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150, 1029–1041 (2012).

    Article  CAS  Google Scholar 

  3. Finsel, I. & Hilbi, H. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Cell. Microbiol. 17, 935–950 (2015).

    Article  CAS  Google Scholar 

  4. Hubber, A. & Roy, C. R. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu. Rev. Cell Dev. Biol. 26, 261–283 (2010).

    Article  CAS  Google Scholar 

  5. Ge, J. & Shao, F. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell. Microbiol. 13, 1870–1880 (2011).

    Article  CAS  Google Scholar 

  6. Muller, M. P. et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329, 946–949 (2010).

    Article  Google Scholar 

  7. Machner, M. P. & Isberg, R. R. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell 11, 47–56 (2006).

    Article  CAS  Google Scholar 

  8. Murata, T. et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat. Cell Biol. 8, 971–977 (2006).

    Article  CAS  Google Scholar 

  9. Schoebel, S., Oesterlin, L. K., Blankenfeldt, W., Goody, R. S. & Itzen, A. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol. Cell 36, 1060–1072 (2009).

    Article  CAS  Google Scholar 

  10. Suh, H. Y. et al. Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO J. 29, 496–504 (2010).

    Article  CAS  Google Scholar 

  11. Zhu, Y. et al. Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc. Natl Acad. Sci. USA 107, 4699–4704 (2010).

    Article  CAS  Google Scholar 

  12. Brombacher, E. et al. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem. 284, 4846–4856 (2009).

    Article  CAS  Google Scholar 

  13. Ingmundson, A., Delprato, A., Lambright, D. G. & Roy, C. R. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450, 365–369 (2007).

    Article  CAS  Google Scholar 

  14. Neunuebel, M. R. et al. De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333, 453–456 (2011).

    Article  CAS  Google Scholar 

  15. Tan, Y. & Luo, Z. Q. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475, 506–509 (2011).

    Article  CAS  Google Scholar 

  16. Tan, Y., Arnold, R. J. & Luo, Z. Q. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc. Natl Acad. Sci. USA 108, 21212–21217 (2011).

    Article  CAS  Google Scholar 

  17. Niebuhr, K. et al. Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector ipgD reorganizes host cell morphology. EMBO J. 21, 5069–5078 (2002).

    Article  CAS  Google Scholar 

  18. Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. & Majerus, P. W. Sopb, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl Acad. Sci. USA 95, 14057–14059 (1998).

    Article  CAS  Google Scholar 

  19. Broberg, C. A., Zhang, L., Gonzalez, H., Laskowski-Arce, M. A. & Orth, K. A Vibrio effector protein is an inositol phosphatase and disrupts host cell membrane integrity. Science 329, 1660–1662 (2010).

    Article  CAS  Google Scholar 

  20. Weber, S. S., Ragaz, C., Reus, K., Nyfeler, Y. & Hilbi, H. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog. 2, e46 (2006).

    Article  Google Scholar 

  21. Mihai Gazdag, E. et al. Mechanism of Rab1b deactivation by the Legionella pneumophila GAP LepB. EMBO Rep. 14, 199–205 (2013).

    Article  Google Scholar 

  22. Mishra, A. K., Del Campo, C. M., Collins, R. E., Roy, C. R. & Lambright, D. G. The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism. J. Biol. Chem. 288, 24000–24011 (2013).

    Article  CAS  Google Scholar 

  23. Yu, Q. et al. Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP. Cell Res. 23, 775–787 (2013).

    Article  CAS  Google Scholar 

  24. Heidtman, M., Chen, E. J., Moy, M. Y. & Isberg, R. R. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell. Microbiol. 11, 230–248 (2009).

    Article  CAS  Google Scholar 

  25. Storrie, B. et al. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol. 143, 1505–1521 (1998).

    Article  CAS  Google Scholar 

  26. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  Google Scholar 

  27. Kim, D. J. et al. Helicobacter pylori proinflammatory protein up-regulates NF-κB as a cell-translocating Ser/Thr kinase. Proc. Natl Acad. Sci. USA 107, 21418–21423 (2010).

    Article  CAS  Google Scholar 

  28. Steinbacher, S. et al. The crystal structure of the Physarum polycephalum actin-fragmin kinase: an atypical protein kinase with a specialized substrate-binding domain. EMBO J. 18, 2923–2929 (1999).

    Article  CAS  Google Scholar 

  29. Walker, E. H., Perisic, O., Ried, C., Stephens, L. & Williams, R. L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402, 313–320 (1999).

    Article  CAS  Google Scholar 

  30. Levine, T. P. & Munro, S. The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr. Biol. 8, 729–739 (1998).

    Article  CAS  Google Scholar 

  31. Halet, G. Imaging phosphoinositide dynamics using GFP-tagged protein domains. Biol. Cell 97, 501–518 (2005).

    Article  CAS  Google Scholar 

  32. Tai, A. W., Bojjireddy, N. & Balla, T. A homogeneous and nonisotopic assay for phosphatidylinositol 4-kinases. Anal. Biochem. 417, 97–102 (2011).

    Article  CAS  Google Scholar 

  33. Hsu, F. et al. Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc. Natl Acad. Sci. USA 109, 13567–13572 (2012).

    Article  CAS  Google Scholar 

  34. Rudge, S. A., Anderson, D. M. & Emr, S. D. Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14–Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol. Biol. Cell 15, 24–36 (2004).

    Article  CAS  Google Scholar 

  35. Balla, A. & Balla, T. Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol. 16, 351–361 (2006).

    Article  CAS  Google Scholar 

  36. Baumlova, A. et al. The crystal structure of the phosphatidylinositol 4-kinase IIα. EMBO Rep. 15, 1085–1092 (2014).

    Article  CAS  Google Scholar 

  37. Burke, J. E. et al. Structures of PI4KIIIβ complexes show simultaneous recruitment of Rab11 and its effectors. Science 344, 1035–1038 (2014).

    Article  CAS  Google Scholar 

  38. Zhou, Q. et al. Molecular insights into the membrane-associated phosphatidylinositol 4-kinase IIα. Nat. Commun. 5, 3552 (2014).

    Article  Google Scholar 

  39. Toulabi, L., Wu, X., Cheng, Y. & Mao, Y. Identification and structural characterization of a Legionella phosphoinositide phosphatase. J. Biol. Chem. 288, 24518–24527 (2013).

    Article  CAS  Google Scholar 

  40. Hubber, A. et al. The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins. PLoS Pathog. 10, e1004222 (2014).

    Article  Google Scholar 

  41. Ragaz, C. et al. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell. Microbiol. 10, 2416–2433 (2008).

    Article  CAS  Google Scholar 

  42. Gaspar, A. H. & Machner, M. P. Vipd is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc. Natl Acad. Sci. USA 111, 4560–4565 (2014).

    Article  CAS  Google Scholar 

  43. Ku, B. et al. Vipd of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog. 8, e1003082 (2012).

    Article  CAS  Google Scholar 

  44. Pizarro-Cerdá, J., Kühbacher, A. & Cossart, P. Phosphoinositides and host–pathogen interactions. Biochim. Biophys. Acta 1851, 911–918 (2015).

    Article  Google Scholar 

  45. Cazalet, C. et al. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet. 6, e1000851 (2010).

    Article  Google Scholar 

  46. Vergne, I. et al. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 102, 4033–4038 (2005).

    Article  CAS  Google Scholar 

  47. Rao, V. D., Misra, S., Boronenkov, I. V., Anderson, R. A. & Hurley, J. H. Structure of type IIβ phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 94, 829–839 (1998).

    Article  CAS  Google Scholar 

  48. Fiume, R. et al. PIP4K and the role of nuclear phosphoinositides in tumour suppression. Biochim. Biophys. Acta 1851, 898–910 (2015).

    Article  CAS  Google Scholar 

  49. de Graaf, P. et al. Phosphatidylinositol 4-kinaseβ is critical for functional association of rab11 with the Golgi complex. Mol. Biol. Cell 15, 2038–2047 (2004).

    Article  CAS  Google Scholar 

  50. Levine, T. P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12, 695–704 (2002).

    Article  CAS  Google Scholar 

  51. Adams, P. D. et al. Phenix: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  52. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank B. Storrie, A.K. Chen, J. Lippincott-Schwartz, X. Chen and X. Wang for providing plasmids or reagents. The authors also thank Y. Ding, Y. Ren and members of the Shao laboratory for technical assistance and discussions. This work was supported by the National Key Research and Development Project on Protein Machinery and its Control and Regulation of Biological Processes (2016YFA0501500), the China National Science Foundation Program for Distinguished Young Scholars (31225002) and Program for International Collaborations (31461143006), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08020202) and the National Basic Research Program of China 973 Program (2014CB849602) to F.S. The research was supported in part by an International Early Career Scientist grant from the Howard Hughes Medical Institute and the Beijing Scholar Program to F.S.

Author information

Authors and Affiliations

Authors

Contributions

F.S. and N.D. conceived the study. N.D. and M.N. designed and performed the functional experiments. L.H. and Q.Y. determined the structure. R.Z. provided technical assistance. N.D. and F.S. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Na Dong or Feng Shao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–8. (PDF 6466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, N., Niu, M., Hu, L. et al. Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol 2, 16236 (2017). https://doi.org/10.1038/nmicrobiol.2016.236

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.236

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology