Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optical and force nanoscopy in microbiology

Abstract

Microbial cells have developed sophisticated multicomponent structures and machineries to govern basic cellular processes, such as chromosome segregation, gene expression, cell division, mechanosensing, cell adhesion and biofilm formation. Because of the small cell sizes, subcellular structures have long been difficult to visualize using diffraction-limited light microscopy. During the last three decades, optical and force nanoscopy techniques have been developed to probe intracellular and extracellular structures with unprecedented resolutions, enabling researchers to study their organization, dynamics and interactions in individual cells, at the single-molecule level, from the inside out, and all the way up to cell–cell interactions in microbial communities. In this Review, we discuss the principles, advantages and limitations of the main optical and force nanoscopy techniques available in microbiology, and we highlight some outstanding questions that these new tools may help to answer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probing the microbial cell from the inside out using nanoscopy.
Figure 2: Spatial organization of bacterial nucleoid.
Figure 3: Spatial distribution and dynamics of DNA-associated machineries.
Figure 4: Intracellular location and morphology of cytoskeletal structures.
Figure 5: Imaging the structure and dynamics of single proteins in bacterial membranes.
Figure 6: The matrix revolutions, dissecting the binding mechanisms of biofilm matrices.

Similar content being viewed by others

References

  1. Ghosal, D. & Lowe, J. Collaborative protein filaments. Embo J. 34, 2312–2320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cloud-Hansen, K. A. et al. Breaching the great wall: peptidoglycan and microbial interactions. Nat. Rev. Microbiol. 4, 710–716 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kolter, R. & Greenberg, E. P. Microbial sciences: The superficial life of microbes. Nature 441, 300–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Müller, D. J. & Dufrêne, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotech. 3, 261–269 (2008).

    Article  CAS  Google Scholar 

  5. Dufrêne, Y. F. Towards nanomicrobiology using atomic force microscopy. Nat. Rev. Microbiol. 6, 674–680 (2008).

    Article  PubMed  CAS  Google Scholar 

  6. Engel, A. & Muller, D. J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7, 715–718 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Engel, A. & Gaub, H. E. Structure and Mechanics of Membrane Proteins. Annu. Rev. Biochem. 77, 127–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Ando, T., Uchihashi, T. & Scheuring, S. Filming Biomolecular Processes by High-Speed Atomic Force Microscopy. Chem. Rev. 114, 3120–3188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hinterdorfer, P. & Dufrêne, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Müller, D. J., Helenius, J., Alsteens, D. & Dufrêne, Y. F. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009).

    Article  PubMed  CAS  Google Scholar 

  11. Strunz, T., Oroszlan, K., Schafer, R. & Guntherodt, H. J. Dynamic force spectroscopy of single DNA molecules. Proc. Natl Acad. Sci. USA 96, 11277–11282 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat. Methods 2, 515–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Alsteens, D., Garcia, M. C., Lipke, P. N. & Dufrene, Y. F. Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc. Natl Acad. Sci. 107, 20744–20749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dupres, V. et al. The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat. Chem. Biol. 5, 857–862 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Helenius, J., Heisenberg, C. P., Gaub, H. E. & Muller, D. J. Single-cell force spectroscopy. J. Cell Sci. 121, 1785–1791 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Beaussart, A. et al. Single-cell force spectroscopy of probiotic bacteria. Biophys. J. 104, 1886–1892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beaussart, A. et al. Nanoscale adhesion forces of Pseudomonas aeruginosa type IV pili. ACS Nano 8, 10723–10733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dufrêne, Y. F., Martínez-Martín, D., Medalsy, I., Alsteens, D. & Müller, D. J. Multiparametric imaging of biological systems by force-distance curve–based AFM. Nat. Methods 10, 847–854 (2013).

    Article  PubMed  CAS  Google Scholar 

  19. Medalsy, I., Hensen, U. & Muller, D. J. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM. Angew. Chem. Int. Ed. 50, 12103–12108 (2011).

    Article  CAS  Google Scholar 

  20. Rico, F., Su, C. & Scheuring, S. Mechanical mapping of single membrane proteins at submolecular resolution. Nano Lett. 11, 3983–3986 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Alsteens, D., Trabelsi, H., Soumillion, P. & Dufrêne, Y. F. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 4, 2926 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Formosa, C. et al. Multiparametric imaging of adhesive nanodomains at the surface of Candida albicans by atomic force microscopy. Nanomed. Nanotechnol. Biol. Med. 11, 57–65 (2015).

    Article  CAS  Google Scholar 

  23. Formosa-Dague, C., Speziale, P., Foster, T. J., Geoghegan, J. A. & Dufrêne, Y. F. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc. Natl Acad. Sci. 113, 410–415 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Formosa-Dague, C. et al. Sticky matrix: adhesion mechanism of the Staphylococcal polysaccharide intercellular adhesin. ACS Nano 10, 3443–3452 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schneider, J. et al. Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat. Methods 12, 827–830 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt, R. et al. Mitochondrial cristae revealed with focused light. Nano Lett. 9, 2508–2510 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. van Oijen, A. M., Köhler, J., Schmidt, J., Müller, M. & Brakenhoff, G. J. 3-Dimensional super-resolution by spectrally selective imaging. Chem. Phys. Lett. 292, 183–187 (1998).

    Article  CAS  Google Scholar 

  34. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chozinski, T. J., Gagnon, L. A. & Vaughan, J. C. Twinkle, twinkle little star: photoswitchable fluorophores for super-resolution imaging. FEBS Lett. 588, 3603–3612 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Pavani, S. R. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA 106, 2995–2999 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Juette, M. F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5, 527–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Tang, J., Akerboom, J., Vaziri, A., Looger, L. L. & Shank, C. V. Near-isotropic 3D optical nanoscopy with photon-limited chromophores. Proc. Natl Acad. Sci. USA 107, 10068–10073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA 106, 3125–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shroff, H., Galbraith, C. G., Galbraith, J. A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coltharp, C., Kessler, R. P. & Xiao, J. Accurate construction of photoactivated localization microscopy (PALM) images for quantitative measurements. PLoS ONE 7, e51725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Endesfelder, U., Malkusch, S., Fricke, F. & Heilemann, M. A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem. Cell Biol. 141, 629–638 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gustafsson, M. G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, D. et al. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hell, S. W. Microscopy and its focal switch. Nat. Methods 6, 24–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Hell, S. W. & Kroug, M. Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit. Appl. Phys. B 60, 495–497 (1995).

    Article  Google Scholar 

  51. Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl Acad. Sci. USA 102, 17565–17569 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Schoen, I., Ries, J., Klotzsch, E., Ewers, H. & Vogel, V. Binding-activated localization microscopy of DNA structures. Nano Lett. 11, 4008–4011 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Durisic, N., Laparra-Cuervo, L., Sandoval-Alvarez, A., Borbely, J. S. & Lakadamyali, M. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods 11, 156–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Gahlmann, A. & Moerner, W. E. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat. Rev. Microbiol. 12, 9–22 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Coltharp, C. & Xiao, J. Superresolution microscopy for microbiology. Cell Microbiol. 14, 1808–1818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Coltharp, C., Yang, X. & Xiao, J. Quantitative analysis of single-molecule superresolution images. Curr. Opin. Struct. Biol. 28, 112–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Small, A. R. & Parthasarathy, R. Superresolution localization methods. Annu. Rev. Phys. Chem. 65, 107–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Dame, R. T. & Tark-Dame, M. Bacterial chromatin: converging views at different scales. Curr. Opin. Cell Biol. 40, 60–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Spahn, C., Endesfelder, U. & Heilemann, M. Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. J. Struct. Biol. 185, 243–249 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Spahn, C., Cella-Zannacchi, F., Endesfelder, U. & Heilemann, M. Correlative super-resolution imaging of RNA polymerase distribution and dynamics, bacterial membrane and chromosomal structure in Escherichia coli. Methods Appl. Fluoresc. 3, 014005 (2015).

    Article  PubMed  CAS  Google Scholar 

  65. Foo, Y. H., Spahn, C., Zhang, H., Heilemann, M. & Kenney, L. J. Single cell super-resolution imaging of E. coli OmpR during environmental stress. Integr. Biol. 7, 1297–1308 (2015).

    Article  CAS  Google Scholar 

  66. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Marbouty, M. et al. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol. Cell 59, 588–602 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Stracy, M. et al. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc. Natl Acad. Sci. USA 112, E4390–E4399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, S. F., Thompson, M. A., Schwartz, M. A., Shapiro, L. & Moerner, W. E. Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. Biophys. J. 100, L31–33 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, W., Li, G. W., Chen, C., Xie, X. S. & Zhuang, X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333, 1445–1449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Straight, A. F., Belmont, A. S., Robinett, C. C. & Murray, A. W. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Hensel, Z., Weng, X., Lagda, A. C. & Xiao, J. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells. PLoS Biol. 11, e1001591 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liao, Y., Schroeder, J. W., Gao, B., Simmons, L. A. & Biteen, J. S. Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair. Proc. Natl Acad. Sci. USA 112, E6898–E6906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uphoff, S., Reyes-Lamothe, R., Garza de Leon, F., Sherratt, D. J. & Kapanidis, A. N. Single-molecule DNA repair in live bacteria. Proc. Natl Acad. Sci. USA 110, 8063–8068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tang, M. et al. UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc. Natl Acad. Sci. USA 96, 8919–8924 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robinson, A. et al. Regulation of mutagenic DNA polymerase V activation in space and time. PLoS Genet. 11, e1005482 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lesterlin, C., Ball, G., Schermelleh, L. & Sherratt, D. J. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506, 249–253 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Rajendram, M. et al. Anionic phospholipids stabilize RecA filament bundles in Escherichia coli. Mol Cell 60, 374–384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bakshi, S., Dalrymple, R. M., Li, W., Choi, H. & Weisshaar, J. C. Partitioning of RNA polymerase activity in live Escherichia coli from analysis of single-molecule diffusive trajectories. Biophys. J. 105, 2676–2686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Endesfelder, U. et al. Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys. J. 105, 172–181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cagliero, C., Zhou, Y. N. & Jin, D. J. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells. Nucleic Acids Res. 42, 13696–13705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jin, D. J., Cagliero, C., Martin, C. M., Izard, J. & Zhou, Y. N. The dynamic nature and territory of transcriptional machinery in the bacterial chromosome. Front. Microbiol. 6, 497 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. Bath, J., Wu, L. J., Errington, J. & Wang, J. C. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290, 995–997 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Yen Shin, J. et al. Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum. eLife 4, e06474 (2015).

    Article  PubMed  Google Scholar 

  86. Fiche, J. B. et al. Recruitment, assembly, and molecular architecture of the SpoIIIE DNA pump revealed by superresolution microscopy. PLoS Biol 11, e1001557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ptacin, J. L. et al. Bacterial scaffold directs pole-specific centromere segregation. Proc. Natl Acad. Sci. USA 111, E2046–E2055 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. de Boer, P., Crossley, R. & Rothfield, L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254–256 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. RayChaudhuri, D. & Park, J. T. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251–254 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Fu, G. et al. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM). PLoS ONE 5, e12682 (2010).

    Article  PubMed  CAS  Google Scholar 

  91. Strauss, M. P. et al. 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10, e1001389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holden, S. J. et al. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc. Natl Acad. Sci. USA 111, 4566–4571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fleurie, A. et al. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516, 259–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jacq, M. et al. Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy. mBio 6, e01108–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Leisch, N. et al. Growth in width and FtsZ ring longitudinal positioning in a gammaproteobacterial symbiont. Curr. Biol. 22, R831–R832 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Grangeon, R., Zupan, J. R., Anderson-Furgeson, J. & Zambryski, P. C. PopZ identifies the new pole, and PodJ identifies the old pole during polar growth in Agrobacterium tumefaciens. Proc. Natl Acad. Sci. USA 112, 11666–11671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Coltharp, C., Buss, J., Plumer, T. M. & Xiao, J. Defining the rate-limiting processes of bacterial cytokinesis. Proc. Natl Acad. Sci. USA 113, E1044–E1053 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rowlett, V. W. & Margolin, W. 3D-SIM super-resolution of FtsZ and its membrane tethers in Escherichia coli cells. Biophys. J. 107, L17–L20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Biteen, J. S., Goley, E. D., Shapiro, L. & Moerner, W. E. Three-dimensional super-resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism. ChemPhysChem 13, 1007–1012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lyu, Z., Carla Coltharp, C., Yang, X. & Xiao, J. Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional Superresolution imaging. Biopolymers 105, 725–734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Eswaramoorthy, P. et al. Cellular architecture mediates DivIVA ultrastructure and regulates min activity in Bacillus subtilis. mBio 2, e00257–11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Buss, J. et al. In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by quantitative super-resolution microscopy. Mol. Microbiol. 89, 1099–1120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Buss, J. et al. A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics. PLoS Genet. 11, e1005128 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Olshausen, P. V. et al. Superresolution imaging of dynamic MreB filaments in B. subtilis—a multiple-motor-driven transport? Biophys. J. 105, 1171–1181 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Reimold, C., Defeu Soufo, H. J., Dempwolff, F. & Graumann, P. L. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol. Biol. Cell 24, 2340–2349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim, S. Y., Gitai, Z., Kinkhabwala, A., Shapiro, L. & Moerner, W. E. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc. Natl Acad. Sci. USA 103, 10929–10934 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Biteen, J. S. et al. Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat. Methods 5, 947–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ptacin, J. L. et al. A spindle-like apparatus guides bacterial chromosome segregation. Nat. Cell Biol. 12, 791–798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ausmees, N., Kuhn, J. R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115, 705–713 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Lew, M. D. et al. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. Proc. Natl Acad. Sci. USA 108, E1102–E1110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Greenfield, D. et al. Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol 7, e1000137 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Fredlund, J., Broder, D., Fleming, T., Claussin, C. & Pogliano, K. The SpoIIQ landmark protein has different requirements for septal localization and immobilization. Mol. Microbiol. 89, 1053–1068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Haas, B. L., Matson, J. S., DiRita, V. J. & Biteen, J. S. Single-molecule tracking in live Vibrio cholerae reveals that ToxR recruits the membrane-bound virulence regulator TcpP to the toxT promoter. Mol Microbiol 96, 4–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Llorente-Garcia, I. et al. Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. Biochim. Biophys. Acta 1837, 811–824 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Karunatilaka, K. S., Cameron, E. A., Martens, E. C., Koropatkin, N. M. & Biteen, J. S. Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts. mBio 5, e02172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dufrene, Y. F., Boonaert, C. J., Gerin, P. A., Asther, M. & Rouxhet, P. G. Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J. Bacteriol. 181, 5350–5354 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schabert, F., Henn, C. & Engel, A. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 268, 92–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Kailas, L. et al. Surface architecture of endospores of the Bacillus cereus/anthracis/thuringiensis family at the subnanometer scale. Proc. Natl Acad. Sci. 108, 16014–16019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Casuso, I., Kodera, N., Le Grimellec, C., Ando, T. & Scheuring, S. Contact-mode high-resolution high-speed atomic force microscopy movies of the purple membrane. Biophys. J. 97, 1354–1361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shibata, M., Yamashita, H., Uchihashi, T., Kandori, H. & Ando, T. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat. Nanotech. 5, 208–212 (2010).

    Article  CAS  Google Scholar 

  121. Yamashita, H. et al. Role of trimer–trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. J. Struct. Biol. 184, 2–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Casuso, I. et al. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat. Nanotech. 7, 525–529 (2012).

    Article  CAS  Google Scholar 

  123. Turner, R. D., Hurd, A. F., Cadby, A., Hobbs, J. K. & Foster, S. J. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture. Nat. Commun. 4, 1496 (2013).

    Article  PubMed  CAS  Google Scholar 

  124. Turner, R. D., Vollmer, W. & Foster, S. J. Different walls for rods and balls: the diversity of peptidoglycan. Mol. Microbiol. 91, 862–874 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hayhurst, E. J., Kailas, L., Hobbs, J. K. & Foster, S. J. Cell wall peptidoglycan architecture in Bacillus subtilis. Proc. Natl Acad. Sci. 105, 14603–14608 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Turner, R. D. et al. Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nat. Commun. 1, 26 (2010).

    Article  PubMed  CAS  Google Scholar 

  127. Wheeler, R., Mesnage, S., Boneca, I. G., Hobbs, J. K. & Foster, S. J. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria. Mol. Microbiol. 82, 1096–1109 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Plomp, M., Leighton, T. J., Wheeler, K. E., Hill, H. D. & Malkin, A. J. In vitro high-resolution structural dynamics of single germinating bacterial spores. Proc. Natl Acad. Sci. 104, 9644–9649 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Andre, G. et al. Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells. Nat. Commun. 1, 27 (2010).

    Article  PubMed  CAS  Google Scholar 

  130. Lotan, R., Sharon, N. & Mirelman, D. Interaction of wheat-germ agglutinin with bacterial cells and cell-wall polymers. Eur. J. Biochem. 55, 257–262 (1975).

    Article  CAS  PubMed  Google Scholar 

  131. Kuru, E. et al. In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew. Chem. Int. Ed. Engl. 51, 12519–12523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liechti, G. W. et al. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506, 507–510 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Sheldrick, G. M., Jones, P. G., Kennard, O., Williams, D. H. & Smith, G. A. Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine. Nature 271, 223–225 (1978).

    Article  CAS  PubMed  Google Scholar 

  134. Monteiro, J. M. et al. Cell shape dynamics during the staphylococcal cell cycle. Nat. Commun. 6, 8055 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. van Teeseling, M. C. et al. Anammox Planctomycetes have a peptidoglycan cell wall. Nat. Commun. 6, 6878 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Tsui, H. C. et al. Pbp2x localizes separately from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae D39. Mol. Microbiol. 94, 21–40 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee, T. K. et al. A dynamically assembled cell wall synthesis machinery buffers cell growth. Proc. Natl Acad. Sci. USA 111, 4554–4559 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Land, A. D. et al. Requirement of essential Pbp2x and GpsB for septal ring closure in Streptococcus pneumoniae D39. Mol. Microbiol. 90, 939–955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kocaoglu, O. et al. Selective penicillin-binding protein imaging probes reveal substructure in bacterial cell division. ACS Chem. Biol. 7, 1746–1753 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bustanji, Y. et al. Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Proc. Natl Acad. Sci. 100, 13292–13297 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lower, S. K. et al. Polymorphisms in fibronectin binding protein A of Staphylococcus aureus are associated with infection of cardiovascular devices. Proc. Natl Acad. Sci. USA 108, 18372–18377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Herman, P. et al. The binding force of the staphylococcal adhesin SdrG is remarkably strong. Mol. Microbiol. 93, 356–368 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Herman-Bausier, P. & Dufrêne, Y. F. Atomic force microscopy reveals a dual collagen-binding activity for the staphylococcal surface protein SdrF. Mol. Microbiol. 99, 611–621 (2015).

    Article  PubMed  CAS  Google Scholar 

  144. Herman-Bausier, P., El-Kirat-Chatel, S., Foster, T. J., Geoghegan, J. A. & Dufrêne, Y. F. Staphylococcus aureus fibronectin-binding protein A mediates cell-cell adhesion through low-affinity homophilic bonds. mBio 6, e00413–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gruszka, D. T. et al. Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein. Nat. Commun. 6, 7271 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. El- Kirat-Chatel, S. et al. Forces in yeast flocculation. Nanoscale 7, 1760–1767 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. El- Kirat-Chatel, S. & Dufrêne, Y. F. Nanoscale adhesion forces between the fungal pathogen Candida albicans and macrophages. Nanoscale Horiz. 1, 69–74 (2016).

    Article  PubMed  Google Scholar 

  148. Formosa-Dague, C. et al. Forces between Staphylococcus aureus and human skin. Nanoscale Horiz. 1, 298–303 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Berk, V. et al. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337, 236–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Turnbull, L. et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nature Commun. 7, 11220 (2016).

    Article  CAS  Google Scholar 

  151. Ivanov, I. E. et al. Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of Pseudomonas fluorescens. Res. Microbiol. 163, 685–691 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Ndieyira, J. W. et al. Nanomechanical detection of antibiotic–mucopeptide binding in a model for superbug drug resistance. Nat. Nanotech. 3, 691–696 (2008).

    Article  CAS  Google Scholar 

  154. Longo, G. et al. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat. Nanotech. 8, 522–526 (2013).

    Article  CAS  Google Scholar 

  155. Kasas, S. et al. Detecting nanoscale vibrations as signature of life. Proc. Natl Acad. Sci. 112, 378–381 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  156. Beaussart, A., Abellán-Flos, M., El-Kirat-Chatel, S., Vincent, S. P. & Dufrêne, Y. F. Force nanoscopy as a versatile platform for quantifying the activity of antiadhesion compounds targeting bacterial pathogens. Nano Lett. 16, 1299–1307 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. El- Kirat-Chatel, S. & Dufrêne, Y. F. Nanoscale imaging of the Candida-macrophage interaction using correlated fluorescence-atomic force microscopy. ACS Nano 2012, 10792–10799 (2012).

    Article  CAS  Google Scholar 

  158. Andre, G. et al. Fluorescence and atomic force microscopy imaging of wall teichoic acids in Lactobacillus plantarum. ACS Chem. Biol. 6, 366–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Odermatt, P. D. et al. High-resolution correlative microscopy: bridging the gap between single molecule localization microscopy and atomic force microscopy. Nano Lett. 15, 4896–4904 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Dufrêne team was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 693630), the National Fund for Scientific Research (FNRS), the FNRS-WELBIO (grant no. WELBIO-CR-2015A-05), the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme), and the Research Department of the Communauté française de Belgique (Concerted research action). Y.F.D. is Research Director at the FNRS. Work in the Xiao lab is supported by National Institute of Health General Medicines 1R01GM086447-06, 1R01GM112008-01 (Multi-PI), National Science Foundation grant EAGER MCB1019000. Y.F.D. and J.X. thank Carla Coltharp and Xinxing Yang for their critical reading and suggestions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xiao or Yves F. Dufrêne.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Dufrêne, Y. Optical and force nanoscopy in microbiology. Nat Microbiol 1, 16186 (2016). https://doi.org/10.1038/nmicrobiol.2016.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.186

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology