Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The dissemination of multidrug-resistant Enterobacter cloacae throughout the UK and Ireland

Abstract

Enterobacter cloacae is a clinically important Gram-negative member of the Enterobacteriaceae, which has increasingly been recognized as a major pathogen in nosocomial infections. Despite this, knowledge about the population structure and the distribution of virulence factors and antibiotic-resistance determinants of this species is scarce. In this study, we analysed a systematic collection of multidrug-resistant E. cloacae isolated between 2001 and 2011 from bloodstream infections across hospitals in the UK and Ireland. We found that the population is characterized by the presence of multiple clones formed at widely different time periods in the past. The clones exhibit a high degree of geographical heterogeneity, which indicates extensive dissemination of these E. cloacae clones across the UK and Ireland. These findings suggest that a diverse, community-based, commensal population underlies multidrug-resistant E. cloacae infections within hospitals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Population diversity of multidrug-resistant E. cloacae.
Figure 2: Population structure of multidrug-resistant E. cloacae.

Similar content being viewed by others

References

  1. Hua, X. et al. Degradation of hexadecane by Enterobacter cloacae strain TU that secretes an exopolysaccharide as a bioemulsifier. Chemosphere 80, 951–956 (2010).

    Article  CAS  Google Scholar 

  2. White, L. et al. Carbapenemase-producing Enterobacteriaceae in hospital wastewater: a reservoir that may be unrelated to clinical isolates. J. Hosp. Infect. 93, 145–151 (2016).

    Article  CAS  Google Scholar 

  3. Al-Kharousi, Z. S., Guizani, N., Al-Sadi, A. M., Al-Bulushi, I. M. & Shaharoona, B. Hiding in fresh fruits and vegetables: opportunistic pathogens may cross geographical barriers. Int. J. Microbiol. 2016, 4292417 (2016).

    Article  Google Scholar 

  4. Davin-Regli, A. & Pages, J. M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 6, 392 (2015).

  5. Sanders, W. E. & Sanders, C. C. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev. 10, 220–241 (1997).

    Article  Google Scholar 

  6. Mezzatesta, M. L., Gona, F. & Stefani, S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 7, 887–902 (2012).

    Article  CAS  Google Scholar 

  7. Fernandez-Baca, V. et al. Molecular epidemiological typing of Enterobacter cloacae isolates from a neonatal intensive care unit: three-year prospective study. J. Hosp. Infect. 49, 173–182 (2001).

    Article  CAS  Google Scholar 

  8. Pestourie, N. et al. Outbreak of AmpC beta-lactamase-hyper-producing Enterobacter cloacae in a neonatal intensive care unit in a French teaching hospital. Am. J. Infect. Control 42, 456–458 (2014).

    Article  Google Scholar 

  9. Dalben, M. et al. Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. J. Hosp. Infect. 70, 7–14 (2008).

    Article  CAS  Google Scholar 

  10. Dugleux, G., Le Coutour, X., Hecquard, C. & Oblin, I. Septicemia caused by contaminated parenteral nutrition pouches: the refrigerator as an unusual cause. J. Parent. Enteral. Nutr. 15, 474–475 (1991).

    Article  CAS  Google Scholar 

  11. Wang, S. A. et al. Enterobacter cloacae bloodstream infections traced to contaminated human albumin. Clin. Infect. Dis. 30, 35–40 (2000).

    Article  CAS  Google Scholar 

  12. Miyoshi-Akiyama, T., Hayakawa, K., Ohmagari, N., Shimojima, M. & Kirikae, T. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLoS ONE 8, e66358 (2013).

    Article  CAS  Google Scholar 

  13. Izdebski, R. et al. MLST reveals potentially high-risk international clones of Enterobacter cloacae. J. Antimicrob. Chemother. 70, 48–56 (2015).

    Article  CAS  Google Scholar 

  14. Potron, A., Poirel, L., Rondinaud, E. & Nordmann, P. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill. 18, 20549 (2013).

    Article  Google Scholar 

  15. Empel, J. et al. Molecular survey of beta-lactamases conferring resistance to newer beta-lactams in Enterobacteriaceae isolates from Polish hospitals. Antimicrob. Agents Chemother. 52, 2449–2454 (2008).

    Article  CAS  Google Scholar 

  16. Barnes, A. I., Ortiz, C., Paraje, M. G., Balanzino, L. E. & Albesa, I. Purification and characterization of a cytotoxin from Enterobacter cloacae. Can. J. Microbiol. 43, 729–733 (1997).

    Article  CAS  Google Scholar 

  17. Stuber, K., Frey, J., Burnens, A. P. & Kuhnert, P. Detection of type III secretion genes as a general indicator of bacterial virulence. Mol. Cell. Probes 17, 25–32 (2003).

    Article  CAS  Google Scholar 

  18. Ren, Y. et al. Complete genome sequence of Enterobacter cloacae subsp. cloacae type strain ATCC 13047. J. Bacteriol. 192, 2463–2464 (2010).

    Article  CAS  Google Scholar 

  19. Liu, W. Y. et al. Complete genome sequence of the endophytic Enterobacter cloacae subsp. cloacae strain ENHKU01. J. Bacteriol. 194, 5965 (2012).

    Article  CAS  Google Scholar 

  20. Coulson, T. J. & Patten, C. L. Complete genome sequence of enterobacter cloacae UW5, a rhizobacterium capable of high levels of indole-3-acetic acid production. Genome Announc. 3, e00843-15 (2015).

    Article  Google Scholar 

  21. Hoffmann, H. & Roggenkamp, A. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 69, 5306–5318 (2003).

    Article  CAS  Google Scholar 

  22. Raymond, F. et al. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J. 10, 707–720 (2016).

    Article  CAS  Google Scholar 

  23. Roach, D. J. et al. A year of infection in theintensive care unit: prospective whole genome sequencing of bacterial clinical isolates reveals cryptic transmissions and novel microbiota. PLoS Genet. 11, e1005413 (2015).

    Article  Google Scholar 

  24. Mukherjee, A., Chettri, B., Langpoklakpam, J. S., Singh, A. K. & Chattopadhyay, D. Draft genome sequence of hydrocarbon-degrading Enterobacter cloacae strain S1:CND1, isolated from crude oil-contaminated soil from the Noonmati oil refinery, Guwahati, Assam, India. Genome Announc. 4, e00370-16 (2016).

    Article  Google Scholar 

  25. McConkey, S. J., Coleman, D. C., Falkiner, F. R., McCann, S. R. & Daly, P. A. Enterobacter cloacae in a haematology/oncology ward—first impressions. J. Hosp. Infect. 14, 277–284 (1989).

    Article  CAS  Google Scholar 

  26. Kuhn, I., Aylingsmith, B., Tullus, K. & Burman, L. G. The use of colonization rate and epidemic index as tools to illustrate the epidemiology of fecal Enterobacteriaceae strains in Swedish neonatal wards. J. Hosp. Infect. 23, 287–297 (1993).

    Article  CAS  Google Scholar 

  27. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).

    Article  Google Scholar 

  28. Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).

    Article  CAS  Google Scholar 

  29. Page, A. et al. Robust high throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microbial Genomics 2, 83 (2016).

    Google Scholar 

  30. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  CAS  Google Scholar 

  31. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  Google Scholar 

  32. Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    Article  CAS  Google Scholar 

  33. Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  Google Scholar 

  34. Huson, D. H. et al. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8, 460 (2007).

    Article  Google Scholar 

  35. Jombart, T., Eggo, R. M., Dodd, P. J. & Balloux, F. Reconstructing disease outbreaks from genetic data: a graph approach. Heredity 106, 383–390 (2011).

    Article  CAS  Google Scholar 

  36. Jombart, T. & Ahmed, I. Adegenet 1.3-1n new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).

    Article  CAS  Google Scholar 

  37. Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

    Article  Google Scholar 

  38. Drummond, A. J. & Rambaut, A. BEAST Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    Article  Google Scholar 

  39. Inouye, M. et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 6, 90 (2014).

    Article  Google Scholar 

  40. Stamatakis, A. RAxML version 8 a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  Google Scholar 

  41. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  42. Harris, S. R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Brodrick and K. Judge for their laboratory assistance, and the library construction, sequencing and core informatics teams at the Wellcome Trust Sanger Institute. The authors acknowledge the British Society for Antimicrobial Chemotherapy (BSAC) for allowing the use of isolates from the BSAC Resistance Surveillance Project. This publication presents independent research supported by the Health Innovation Challenge Fund (HICF-T5-342 and WT098600), a parallel funding partnership between the UK Department of Health and the Wellcome Trust. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health, Public Health England or the Wellcome Trust. This project was also funded by a grant awarded to the Wellcome Trust Sanger Institute (098051).

Author information

Authors and Affiliations

Authors

Contributions

S.J.P., D.M. and J.P. designed the study. D.M. analysed the data. S.R. performed the in silico rpoB and hsp60 typing. V.M., S.J.P. and J.P. contributed materials and data. S.J.P and J.P. completed ethical approvals. J.P. and S.J.P. were responsible for management of the study.

Corresponding author

Correspondence to Julian Parkhill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–18, Supplementary Tables' Legends (PDF 3115 kb)

Supplementary Data 1

Supplementary Tables 1–5 (ZIP 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradigaravand, D., Reuter, S., Martin, V. et al. The dissemination of multidrug-resistant Enterobacter cloacae throughout the UK and Ireland. Nat Microbiol 1, 16173 (2016). https://doi.org/10.1038/nmicrobiol.2016.173

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing