Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

An Erratum to this article was published on 12 June 2017

Abstract

No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently 90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteins in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of M-C4BP complexes.
Figure 2: C4BP-binding mode.
Figure 3: C4BP-binding modes of M proteins.
Figure 4: M2–C4BP interaction.

Similar content being viewed by others

References

  1. Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5, 685–694 (2005).

    Article  PubMed  Google Scholar 

  2. Cole, J. N., Barnett, T. C., Nizet, V. & Walker, M. J. Molecular insight into invasive group A streptococcal disease. Nat. Rev. Microbiol. 9, 724–736 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Dale, J. B. et al. Group A streptococcal vaccines: paving a path for accelerated development. Vaccine 31 (Suppl. 2), B216–B222 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Good, M. F., Pandey, M., Batzloff, M. R. & Tyrrell, G. J. Strategic development of the conserved region of the M protein and other candidates as vaccines to prevent infection with group A streptococci. Expert Rev. Vaccines 14, 1459–1470 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. McNamara, C. et al. Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence. Science 319, 1405–1408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghosh, P. The nonideal coiled coil of M protein and its multifarious functions in pathogenesis. Adv. Exp. Med. Biol. 715, 197–211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sandin, C., Carlsson, F. & Lindahl, G. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol. Microbiol. 59, 20–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Penfound, T. A., Ofek, I., Courtney, H. S., Hasty, D. L. & Dale, J. B. The NH2-terminal region of Streptococcus pyogenes M5 protein confers protection against degradation by proteases and enhances mucosal colonization of mice. J. Infect. Dis. 201, 1580–1588 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Lannergard, J. et al. The hypervariable region of Streptococcus pyogenes M protein escapes antibody attack by antigenic variation and weak immunogenicity. Cell Host Microbe 10, 147–157 (2011).

    Article  PubMed  Google Scholar 

  10. Dale, J. B., Penfound, T. A., Chiang, E. Y. & Walton, W. J. New 30-valent M protein-based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of group A streptococci. Vaccine 29, 8175–8178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McMillan, D. J. et al. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study. Clin. Microbiol. Infect. 19, E222–E229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Persson, J., Beall, B., Linse, S. & Lindahl, G. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein. PLoS Pathog. 2, e47 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ermert, D. & Blom, A. M. C4b-binding protein: the good, the bad and the deadly. Novel functions of an old friend. Immunol. Lett. 169, 82–92 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Lambris, J. D., Ricklin, D. & Geisbrecht, B. V. Complement evasion by human pathogens. Nat. Rev. Microbiol. 6, 132–142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blom, A. M., Hallstrom, T. & Riesbeck, K. Complement evasion strategies of pathogens—acquisition of inhibitors and beyond. Mol. Immunol. 46, 2808–2817 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Carlsson, F., Berggard, K., Stalhammar-Carlemalm, M. & Lindahl, G. Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein. J. Exp. Med. 198, 1057–1068 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ermert, D. et al. Virulence of group A Streptococci is enhanced by human complement inhibitors. PLoS Pathog. 11, e1005043 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fremont, D. H., Matsumura, M., Stura, E. A., Peterson, P. A. & Wilson, I. A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257, 919–927 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Madden, D. R., Gorga, J. C., Strominger, J. L. & Wiley, D. C. The three-dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70, 1035–1048 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Jenkins, H. T. et al. Human C4b-binding protein, structural basis for interaction with streptococcal M protein, a major bacterial virulence factor. J. Biol. Chem. 281, 3690–3697 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Accardo, P., Sanchez-Corral, P., Criado, O., Garcia, E. & Rodriguez de Cordoba, S. Binding of human complement component C4b-binding protein (C4BP) to Streptococcus pyogenes involves the C4b-binding site. J. Immunol. 157, 4935–4939 (1996).

    CAS  PubMed  Google Scholar 

  22. Blom, A. M. et al. Human C4b-binding protein has overlapping, but not identical, binding sites for C4b and streptococcal M proteins. J. Immunol. 164, 5328–5336 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Andre, I. et al. Streptococcal M protein: structural studies of the hypervariable region, free and bound to human C4BP. Biochemistry 45, 4559–4568 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Sanderson-Smith, M. et al. A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J. Infect. Dis. 210, 1325–1338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perkins, S. J., Chung, L. P. & Reid, K. B. Unusual ultrastructure of complement-component-C4b-binding protein of human complement by synchrotron X-ray scattering and hydrodynamic analysis. Biochem. J. 233, 799–807 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berggard, K. et al. Binding of human C4BP to the hypervariable region of M protein: a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes. Mol. Microbiol. 42, 539–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Gustafsson, M. C. et al. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence. PLoS Pathog. 9, e1003323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ermert, D. et al. Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells. J. Biol. Chem. 288, 32172–32183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, T. et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445, 732–737 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McLellan, J. S. et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steer, A. C., Law, I., Matatolu, L., Beall, B. W. & Carapetis, J. R. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect. Dis. 9, 611–616 (2009).

    Article  PubMed  Google Scholar 

  35. Doublie, S. Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems. Methods Mol. Biol. 363, 91–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  40. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pearlman, D. A. et al. Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91, 1–41 (1995).

    Article  CAS  Google Scholar 

  43. Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Case, D. A. et al. AMBER 2015 (Univ. California, San Francisco, 2015).

    Google Scholar 

  45. Olsson, M. H. M., Sondergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3 consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Sondergaard, C. R., Olsson, M. H. M., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Li, P. F., Roberts, B. P., Chakravorty, D. K. & Merz, K. M. Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J. Chem. Theory Comput. 9, 2733–2748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald—an N log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  49. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  50. Nelson, M. T. et al. NAMD: a parallel, object oriented molecular dynamics program. Int. J. Supercomput. Appl. 10, 251–268 (1996).

    Google Scholar 

  51. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Izaguirre, J. A., Catarello, D. P., Wozniak, J. M. & Skeel, R. D. Langevin stabilization of molecular dynamics. J. Chem. Phys. 114, 2090–2098 (2001).

    Article  CAS  Google Scholar 

  53. Jiang, W. et al. High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. J. Phys. Chem. Lett. 2, 87–92 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A. & Haak, J. R. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  55. Caves, L. S. D., Evanseck, J. D. & Karplus, M. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci. 7, 649–666 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Humphrey, W., Dalke, A. & Schulten, K. VMD visual molecular dynamics. J. Mol. Graph. Model. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  58. Levine, B. G., Stone, J. E. & Kohlmeyer, A. Fast analysis of molecular dynamics trajectories with graphics processing units—radial distribution function histogramming. J. Comput. Phys. 230, 3556–3569 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank O. Ghosh for help on the project. This works was supported by National Institutes of Health (NIH) grant T32 GM007240 (C.Z.B.), American Heart Association Predoctoral Fellowship 14PRE18320032 (C.Z.B.), NIH R01 AI096837 (P.G. and V.N.) and NIH R01 AI077780 (V.N.). The work was also funded in part by the National Biomedical Computation Resource, NIH P41 GM103426, NIH Director's New Innovator Award Program DP2-OD007237 and through the National Science Foundation XSEDE Supercomputer Resources Grant RAC CHE060073N to R.E.A. S.P.H. was supported by the Interfaces Multi-Scale Analysis of Biological Structure and Function training grant NIH T32 EB009380.

Author information

Authors and Affiliations

Authors

Contributions

C.Z.B., V.N. and P.G. conceived the experiments. C.Z.B., A.J.B.-S. and T.B. carried out the structure determinations. C.Z.B. and A.J.B.-S. carried out the binding studies. S.P.H. and R.E.A. carried out and analysed the MD simulations. C.Z.B. and P.G. wrote the paper with input from all the authors.

Corresponding author

Correspondence to Partho Ghosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–16, legends for Supplementary Videos 1–5, Supplementary References (PDF 10446 kb)

Supplementary Video 1

R39 nook in M2-C4BPα1-2. (MOV 9313 kb)

Supplementary Video 2

R39 nook in M2 (F75A)-C4BPα1-2. (MOV 9328 kb)

Supplementary Video 3

C4BPα2 contacts in M2-C4BPα1-2. (MOV 13863 kb)

Supplementary Video 4

C4BPα2 contacts in M2 (K65A)-C4BPα1-2. (MOV 13986 kb)

Supplementary Video 5

C4BPα2 contacts in M2 (N66D)-C4BPα1-2. (MOV 13809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buffalo, C., Bahn-Suh, A., Hirakis, S. et al. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein. Nat Microbiol 1, 16155 (2016). https://doi.org/10.1038/nmicrobiol.2016.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.155

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology