Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surveys, simulation and single-cell assays relate function and phylogeny in a lake ecosystem

Abstract

Much remains unknown about what drives microbial community structure and diversity. Highly structured environments might offer clues. For example, it may be possible to identify metabolically similar species as groups of organisms that correlate spatially with the geochemical processes they carry out. Here, we use a 16S ribosomal RNA gene survey in a lake that has chemical gradients across its depth to identify groups of spatially correlated but phylogenetically diverse organisms. Some groups had distributions across depth that aligned with the distributions of metabolic processes predicted by a biogeochemical model, suggesting that these groups performed biogeochemical functions. A single-cell genetic assay showed, however, that the groups associated with one biogeochemical process, sulfate reduction, contained only a few organisms that have the genes required to reduce sulfate. These results raise the possibility that some of these spatially correlated groups are consortia of phylogenetically diverse and metabolically different microbes that cooperate to carry out geochemical functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial survey of the lake identified communities that vary with depth.
Figure 2: The model creates a dynamic picture of chemical changes that occur in the lake through the lake's depth (vertical axis) across time (horizontal).
Figure 3: Distribution of key populations (black lines, relative abundance) from 2013 and their correspondence with modelled processes (red lines, relative rate).
Figure 4: Operational ecological units (OEUs) are composed of phylogenetically diverse OTUs that largely align with modelled processes.
Figure 5: OEUs corresponding to sulfate reduction do not have metabolically identical OTUs.

Similar content being viewed by others

References

  1. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    Article  CAS  Google Scholar 

  2. Wilmes, P., Simmons, S. L., Denef, V. J. & Banfield, J. F. The dynamic genetic repertoire of microbial communities. FEMS Microbiol. Rev. 33, 109–132 (2009).

    Article  CAS  Google Scholar 

  3. Rundell, E. A. et al. 16S rRNA gene survey of microbial communities in winogradsky columns. PLoS ONE 9, e104134 (2014).

    Article  Google Scholar 

  4. Ward, D. M., Ferris, M. J., Nold, S. C. & Bateson, M. M. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. Rev. 62, 1353–1370 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bier, R. L., Voss, K. A. & Bernhardt, E. S. Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams. ISME J. 9, 1378–1390 (2015).

    Article  CAS  Google Scholar 

  6. Schrenk, M. O., Kelley, D. S., Delaney, J. R. & Baross, J. A. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69, 3580–3592 (2003).

    Article  CAS  Google Scholar 

  7. Pinel-Alloul, B. & Ghadouani, A. in The Spatial Distribution of Microbes in the Environment (eds Franklin, R. B. & Mills, A. L. ) 203–310 (Springer, 2007).

    Book  Google Scholar 

  8. Neufeld, J. D., Wagner, M. & Murrell, J. C. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 1, 103–110 (2007).

    Article  CAS  Google Scholar 

  9. Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nature Biotechnol. 31, 533–538 (2013).

    Article  CAS  Google Scholar 

  10. Martiny, A. C., Treseder, K. & Pusch, G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 7, 830–838 (2013).

    Article  CAS  Google Scholar 

  11. Klein, M. et al. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 183, 6028–6035 (2001).

    Article  CAS  Google Scholar 

  12. Orphan, V. J. et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl. Environ. Microbiol. 67, 1922–1934 (2001).

    Article  CAS  Google Scholar 

  13. Madigan, M. T., Martinko, J. M., Dunlap, P. V. & Clark, D. P. Brock Biology of Microorganisms 12th edn (Pearson/Benjamin Cummings, 2009).

    Google Scholar 

  14. Varadharajan, C. Magnitude and Spatio-temporal Variability of Methane Emissions from a Eutrophic Freshwater Lake PhD thesis, Massachusetts Institute of Technology (2009).

  15. Varadharajan, C. & Hemond, H. F. Time-series analysis of high-resolution ebullition fluxes from a stratified, freshwater lake. J. Geophys. Res. Biogeosci. 117 G02004 (2012).

    Article  Google Scholar 

  16. Senn, D. B. Coupled Arsenic, Iron, and Nitrogen Cycling in Arsenic-Contaminated Upper Mystic Lake PhD thesis, Massachusetts Institute of Technology (2001).

  17. Senn, D. B. & Hemond, H. F. Nitrate controls on iron and arsenic in an urban lake. Science 296, 2373–2376 (2002).

    Article  CAS  Google Scholar 

  18. Peterson, E. J. R. Carbon and Electron Flow via Methanogenesis, SO 42−, NO 3 and Fe3+ Reduction in the Anoxic Hypolimnia of Upper Mystic Lake Masters thesis, Massachusetts Institute of Technology (2005).

  19. Wetzel, R. G. Limnology 3rd edn (Academic, 2001).

    Google Scholar 

  20. Preheim, S. P., Perrotta, A. R., Martin-Platero, A. M., Gupta, A. & Alm, E. J. Distribution-based clustering: using ecology to refine the operational taxonomic unit. Appl. Environ. Microbiol. 79, 6593–6603 (2013).

    Article  CAS  Google Scholar 

  21. Jax, K. Ecological units: definitions and application. Q. Rev. Biol. 81, 237–258 (2006).

    Article  Google Scholar 

  22. Hunter, K. S., Wang, Y. F. & Van Cappellen, P. Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J. Hydrol. 209, 53–80 (1998).

    Article  CAS  Google Scholar 

  23. Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut Bacteroidetes: the food connection. Front. Microbiol. 2, 93 (2011).

    Article  Google Scholar 

  24. Holmes, D. E., Nevin, K. P., Woodard, T. L., Peacock, A. D. & Lovley, D. R. Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int. J. Syst. Evol. Microbiol. 57, 701–707 (2007).

    Article  CAS  Google Scholar 

  25. Leloup, J., Quillet, L., Oger, C., Boust, D. & Petit, F. Molecular quantification of sulfate-reducing microorganisms (carrying dsrAB genes) by competitive PCR in estuarine sediments. FEMS Microbiol. Ecol. 47, 207–214 (2004).

    Article  CAS  Google Scholar 

  26. Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).

    Article  CAS  Google Scholar 

  27. Purkhold, U., Wagner, M., Timmermann, G., Pommerening-Roser, A. & Koops, H. P. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int. J. Syst. Evol. Microbiol. 53, 1485–1494 (2003).

    Article  CAS  Google Scholar 

  28. Alawi, M., Lipski, A., Sanders, T., Pfeiffer, E.-M. & Spieck, E. Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. ISME J. 1, 256–264 (2007).

    Article  CAS  Google Scholar 

  29. Canfield, D. E., Kristensen, E. & Thamdrup, B. in Advances in Marine Biology Vol. 48 (eds Canfield, D. E., Kristensen, E. & Thamdrup, B. ) 205–267 (Academic, 2005).

    Google Scholar 

  30. Costa, E., Perez, J. & Kreft, J. U. Why is metabolic labour divided in nitrification? Trends Microbiol. 14, 213–219 (2006).

    Article  CAS  Google Scholar 

  31. Beck, D. A. C. et al. A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ. 1, e23 (2013).

    Article  Google Scholar 

  32. Faust, K. & Raes, J. Microbial interactions: from networks to models. Nature Rev. Microbiol. 10, 538–550 (2012).

    Article  CAS  Google Scholar 

  33. Eiler, A., Heinrich, F. & Bertilsson, S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 6, 330–342 (2012).

    Article  CAS  Google Scholar 

  34. Gies, E. A., Konwar, K. M., Beatty, J. T. & Hallam, S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. 80, 6807–6818 (2014).

    Article  Google Scholar 

  35. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108, 4578–4585 (2011).

    Article  CAS  Google Scholar 

  36. Horner-Devine, M. C. et al. A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88, 1345–1353 (2007).

    Article  Google Scholar 

  37. Radajewski, S., Ineson, P., Parekh, N. R. & Murrell, J. C. Stable-isotope probing as a tool in microbial ecology. Nature 403, 646–649 (2000).

    Article  CAS  Google Scholar 

  38. Dekas, A. E. & Orphan, V. J. Identification of diazotrophic microorganisms in marine sediment via fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). Methods Enzymol. 486, 281–305 (2011).

    Article  CAS  Google Scholar 

  39. Nielsen, J. L. & Nielsen, P. H. Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N. ) (Springer-Verlag, 2010).

    Google Scholar 

  40. Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

    Article  CAS  Google Scholar 

  41. Blackburn, M. C. Development of New Tools and Applications for High-Throughput Sequencing of Microbiomes in Environmental or Clinical Samples Masters thesis, Massachusetts Institute of Technology (2010).

  42. Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M. ) 125–175 (Wiley, 1991).

    Google Scholar 

  43. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998 (2013).

    Article  CAS  Google Scholar 

  44. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  Google Scholar 

  45. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article  CAS  Google Scholar 

  46. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–21200 (2011).

    Article  CAS  Google Scholar 

  47. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  Google Scholar 

  48. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  Google Scholar 

  49. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  50. Tamminen, M. V. & Virta, M. P. J. Single gene-based distinction of individual microbial genomes from a mixed population of microbial cells. Front. Microbiol. 6, 195 (2015).

    Article  Google Scholar 

  51. Turchaninova, M. A. et al. Pairing of T-cell receptor chains via emulsion PCR. Eur. J. Immunol. 43, 2507–2515 (2013).

    Article  CAS  Google Scholar 

  52. Wagner, M. et al. Functional marker genes for identification of sulfate-reducing prokaryotes. Methods Enzymol. 397, 469–489 (2005).

    Article  CAS  Google Scholar 

  53. Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975–2982 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation Graduate Research Fellowship (grant no. 1122374) and by the US Department of Energy, Office of Science, Office of Biological and Environmental Research (award no. DE-SC0008743).

Author information

Authors and Affiliations

Authors

Contributions

S.P.P., S.W.O., H.H. and E.J.A. designed the research. S.P.P., S.W.O., A.M., C.V., M.B. and S.J.S. performed the research. S.P.P., S.W.O., J.F. and J.R. contributed analytical tools. S.P.P., S.W.O. and J.R. analysed the data. S.P.P., S.W.O. and E.J.A. wrote the paper.

Corresponding author

Correspondence to Eric J. Alm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Text, Supplementary References, Supplementary Tables 1–6, Supplementary Figures 1–9 (PDF 2565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preheim, S., Olesen, S., Spencer, S. et al. Surveys, simulation and single-cell assays relate function and phylogeny in a lake ecosystem. Nat Microbiol 1, 16130 (2016). https://doi.org/10.1038/nmicrobiol.2016.130

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.130

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology