Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein folding in the cell envelope of Escherichia coli

Abstract

While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topological classification of the E. coli proteome within the bacterial envelope compartments.
Figure 2: Birds-eye view of protein folding pathways in the E. coli cell envelope upon secretion by the Sec system.
Figure 3: Structures and mechanisms of E. coli periplasmic chaperones.
Figure 4: Outer membrane protein insertion via the β-barrel assembly machinery.
Figure 5: Structures and mechanisms of E. coli OM trafficking and stress response systems.

Similar content being viewed by others

References

  1. Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Yu, H. et al. Protein misfolding occurs by slow diffusion across multiple barriers in a rough energy landscape. Proc. Natl Acad. Sci. USA 112, 8308–8313 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Uversky, V. N. Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta 1834, 932–951 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Kovacs, D., Szabo, B., Pancsa, R. & Tompa, P. Intrinsically disordered proteins undergo and assist folding transitions in the proteome. Arch. Biochem. Biophys. 531, 80–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Orfanoudaki, G. & Economou, A. Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). Mol. Cell Proteomics 13, 3674–3687 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Papanastasiou, M. et al. The Escherichia coli peripheral inner membrane proteome. Mol. Cell. Proteomics 12, 599–610 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Papanastasiou, M. et al. Rapid label-free quantitative analysis of the E. coli BL21(DE3) inner membrane proteome. Proteomics 16, 85–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Dramsi, S., Magnet, S., Davison, S. & Arthur, M. Covalent attachment of proteins to peptidoglycan. FEMS Microbiol. Rev. 32, 307–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Collin, S., Guilvout, I., Nickerson, N. N. & Pugsley, A. P. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin. Mol. Microbiol. 80, 655–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Cao, B. et al. Structure of the nonameric bacterial amyloid secretion channel. Proc. Natl Acad. Sci. USA 111, E5439–E5444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kudva, R. et al. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res. Microbiol. 164, 505–534 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Beckwith, J. The Sec-dependent pathway. Res. Microbiol. 164, 497–504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Fitter, J. The perspectives of studying multi-domain protein folding. Cell. Mol. Life Sci. 66, 1672–1681 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, T., Hori, N. & Takada, S. How co-translational folding of multi-domain protein is affected by elongation schedule: molecular simulations. PLoS Comput. Biol. 11, e1004356 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Andreeva, A., Howorth, D., Chothia, C., Kulesha, E. & Murzin, A. G. SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res. 42, D310–D314 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Milo, R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays 35, 1050–1055 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graham, L. L., Beveridge, T. J. & Nanninga, N. Periplasmic space and the concept of the periplasm. Trends Biochem. Sci. 16, 328–329 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Mittal, S., Chowhan, R. K. & Singh, L. R. Macromolecular crowding: macromolecules friend or foe. Biochim. Biophys. Acta 1850, 1822–1831 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, H. X., Rivas, G. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ye, C., Chai, Q., Zhong, M. & Wei, Y. Effect of crowding by Ficolls on OmpA and OmpT refolding and membrane insertion. Protein Sci. 22, 239–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Shu, W., Liu, J., Ji, H. & Lu, M. Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 Å resolution. J. Mol. Biol. 299, 1101–1112 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Walton, T. A. & Sousa, M. C. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell. 15, 367–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Bjelic, S., Wieninger, S., Jelesarov, I. & Karshikoff, A. Electrostatic contribution to the thermodynamic and kinetic stability of the homotrimeric coiled coil Lpp-56: a computational study. Proteins 70, 810–822 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Banci, L., Bertini, I., Cramaro, F., Del Conte, R. & Viezzoli, M. S. Solution structure of Apo Cu, Zn superoxide dismutase: role of metal ions in protein folding. Biochemistry 42, 9543–9553 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Naveed, H., Jackups, R. Jr & Liang, J. Predicting weakly stable regions, oligomerization state, and protein-protein interfaces in transmembrane domains of outer membrane proteins. Proc. Natl Acad. Sci. USA 106, 12735–12740 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akiyama, Y. & Ito, K. Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo. J. Biol. Chem. 268, 8146–8150 (1993).

    CAS  PubMed  Google Scholar 

  29. Werner, J., Augustus, A. M. & Misra, R. Assembly of TolC, a structurally unique and multifunctional outer membrane protein of Escherichia coli K-12. J. Bacteriol. 185, 6540–6547 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Surrey, T., Schmid, A. & Jahnig, F. Folding and membrane insertion of the trimeric β-barrel protein OmpF. Biochemistry 35, 2283–2288 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Dunstan, R. A. et al. Assembly of the secretion pores GspD, Wza and CsgG into bacterial outer membranes does not require the Omp85 proteins BamA or TamA. Mol. Microbiol. 97, 616–629 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Wilks, J. C. & Slonczewski, J. L. pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 189, 5601–5607 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakurai, Y., Anzai, I. & Furukawa, Y. A primary role for disulfide formation in the productive folding of prokaryotic Cu, Zn-superoxide dismutase. J. Biol. Chem. 289, 20139–20149 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, T. & O'Brian, M. R. Control of DegP-dependent degradation of c-type cytochromes by heme and the cytochrome c maturation system in Escherichia coli. J. Bacteriol. 189, 6253–6259 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun, Y. J., Rose, J., Wang, B. C. & Hsiao, C. D. The structure of glutamine-binding protein complexed with glutamine at 1.94 Å resolution: comparisons with other amino acid binding proteins. J. Mol. Biol. 278, 219–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Cox, E. H. & McLendon, G. L. Zinc-dependent protein folding. Curr. Opin. Chem. Biol. 4, 162–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Wittung-Stafshede, P. Role of cofactors in protein folding. Acc. Chem. Res. 35, 201–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Tottey, S. et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455, 1138–1142 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Thomas, S., Bakkes, P. J., Smits, S. H. & Schmitt, L. Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate. Biochim. Biophys. Acta 1844, 1500–1510 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Herman, P. et al. The role of calcium in the conformational dynamics and thermal stability of the d-galactose/d-glucose-binding protein from Escherichia coli. Proteins 61, 184–195 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Li, W., Wang, J., Zhang, J. & Wang, W. Molecular simulations of metal-coupled protein folding. Curr. Opin. Struct. Biol. 30, 25–31 (2015).

    Article  PubMed  CAS  Google Scholar 

  42. Bushmarina, N. A., Blanchet, C. E., Vernier, G. & Forge, V. Cofactor effects on the protein folding reaction: acceleration of α-lactalbumin refolding by metal ions. Protein Sci. 15, 659–671 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gessmann, D. et al. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc. Natl Acad. Sci. USA 111, 5878–5883 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huysmans, G. H., Guilvout, I., Chami, M., Nickerson, N. N. & Pugsley, A. P. Lipids assist the membrane insertion of a BAM-independent outer membrane protein. Sci. Rep. 5, 15068 (2015).

  45. Anishkin, A., Loukin, S. H., Teng, J. & Kung, C. Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc. Natl Acad. Sci. USA 111, 7898–7905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bowie, J. U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Burgess, N. K., Dao, T. P., Stanley, A. M. & Fleming, K. G. Beta-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J. Biol. Chem. 283, 26748–26758 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saraogi, I. & Shan, S. O. Co-translational protein targeting to the bacterial membrane. Biochim. Biophys. Acta 1843, 1433–1441 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Dalbey, R. E., Kuhn, A., Zhu, L. & Kiefer, D. The membrane insertase YidC. Biochim. Biophys. Acta 1843, 1489–1496 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Huber, D. et al. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 187, 2983–2991 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, D., Sweredoski, M. J., Graham, R. L., Hess, S. & Shan, S. O. Novel proteomic tools reveal essential roles of SRP and importance of proper membrane protein biogenesis. Mol. Cell. Proteomics 11, M111.011585 (2012).

    Article  PubMed  CAS  Google Scholar 

  52. Chatzi, K. E., Sardis, M. F., Economou, A. & Karamanou, S. SecA-mediated targeting and translocation of secretory proteins. Biochim. Biophys. Acta 1843, 1466–1474 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Chatzi, K. E., Sardis, M. F., Karamanou, S. & Economou, A. Breaking on through to the other side: protein export through the bacterial Sec system. Biochem. J. 449, 25–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Gouridis, G., Karamanou, S., Gelis, I., Kalodimos, C. G. & Economou, A. Signal peptides are allosteric activators of the protein translocase. Nature 462, 363–367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsuyama, S., Fujita, Y. & Mizushima, S. SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. Embo J. 12, 265–270 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kadokura, H. & Beckwith, J. Detecting folding intermediates of a protein as it passes through the bacterial translocation channel. Cell 138, 1164–1173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Portaliou, A. G., Tsolis, K. C., Loos, M. S., Zorzini, V. & Economou, A. Type III secretion: building and operating a remarkable nanomachine. Trends Biochem. Sci. 41, 175–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Diepold, A. & Armitage, J. P. Type III secretion systems: the bacterial flagellum and the injectisome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20150020 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Patel, R., Smith, S. M. & Robinson, C. Protein transport by the bacterial Tat pathway. Biochim. Biophys. Acta 1843, 1620–1628 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Turner, R. J., Papish, A. L. & Sargent, F. Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can. J. Microbiol. 50, 225–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nature Rev. Microbiol. 13, 343–359 (2015).

    Article  CAS  Google Scholar 

  62. Delepelaire, P. Type I secretion in Gram-negative bacteria. Biochim. Biophys. Acta 1694, 149–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Leo, J. C., Grin, I. & Linke, D. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1088–1101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Christie, P. J., Whitaker, N. & Gonzalez-Rivera, C. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta 1843, 1578–1591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wallden, K., Rivera-Calzada, A. & Waksman, G. Type IV secretion systems: versatility and diversity in function. Cell Microbiol. 12, 1203–1212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cianfanelli, F. R., Monlezun, L. & Coulthurst, S. J. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol. 24, 51–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Hachani, A., Wood, T. E. & Filloux, A. Type VI secretion and anti-host effectors. Curr. Opin. Microbiol. 29, 81–93 (2015).

    Article  PubMed  CAS  Google Scholar 

  68. Abdallah, A. M. et al. Type VII secretion—mycobacteria show the way. Nature Rev. Microbiol. 5, 883–891 (2007).

    Article  CAS  Google Scholar 

  69. Okuda, S. & Tokuda, H. Lipoprotein sorting in bacteria. Annu. Rev. Microbiol. 65, 239–659 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Okuda, S. & Tokuda, H. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB. Proc. Natl Acad. Sci. USA 106, 5877–5882 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goemans, C., Denoncin, K. & Collet, J. F. Folding mechanisms of periplasmic proteins. Biochim. Biophys. Acta 1843, 1517–1528 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Jarchow, S., Luck, C., Gorg, A. & Skerra, A. Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp. Proteomics 8, 4987–4994 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Bothmann, H. & Pluckthun, A. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nature Biotechnol. 16, 376–380 (1998).

    Article  CAS  Google Scholar 

  74. Burmann, B. M., Wang, C. & Hiller, S. Conformation and dynamics of the periplasmic membrane-protein-chaperone complexes OmpX-Skp and tOmpA-Skp. Nature Struct. Mol. Biol. 20, 1265–1272 (2013).

    Article  CAS  Google Scholar 

  75. Ramm, K. & Pluckthun, A. The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA. II. Isomerase-independent chaperone activity in vitro. J. Biol. Chem. 275, 17106–17113 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Bothmann, H. & Pluckthun, A. The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 275, 17100–17105 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Weininger, U., Jakob, R. P., Kovermann, M., Balbach, J. & Schmid, F. X. The prolyl isomerase domain of PpiD from Escherichia coli shows a parvulin fold but is devoid of catalytic activity. Protein Sci. 19, 6–18 (2010).

    CAS  PubMed  Google Scholar 

  78. Sachelaru, I., Petriman, N. A., Kudva, R. & Koch, H. G. Dynamic interaction of the sec translocon with the chaperone PpiD. J. Biol. Chem. 289, 21706–21715 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Antonoaea, R., Furst, M., Nishiyama, K. & Muller, M. The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. Biochemistry 47, 5649–5656 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Justice, S. S. et al. Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J. Bacteriol. 187, 7680–6 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Skorko-Glonek, J., Laskowska, E., Sobiecka-Szkatula, A. & Lipinska, B. Characterization of the chaperone-like activity of HtrA (DegP) protein from Escherichia coli under the conditions of heat shock. Arch. Biochem. Biophys. 464, 80–89 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Ge, X. et al. DegP primarily functions as a protease for the biogenesis of β-barrel outer membrane proteins in the Gram-negative bacterium Escherichia coli. Febs J. 281, 1226–1240 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Denoncin, K. & Collet, J. F. Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Antioxid. Redox Signal. 19, 63–71 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moon, C. P., Zaccai, N. R., Fleming, P. J., Gessmann, D. & Fleming, K. G. Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. Proc. Natl Acad. Sci. USA 110, 4285–4290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dunstan, R. A. et al. Assembly of the type II secretion system such as found in Vibrio cholerae depends on the novel Pilotin AspS. PLoS Pathog. 9, e1003117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jeeves, M. & Knowles, T. J. A novel pathway for outer membrane protein biogenesis in Gram-negative bacteria. Mol. Microbiol. 97, 607–611 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Behrens, S., Maier, R., de Cock, H., Schmid, F. X. & Gross, C. A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. Embo J. 20, 285–294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bitto, E. & McKay, D. B. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J. Biol. Chem. 278, 49316–49322 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. McMorran, L. M., Brockwell, D. J. & Radford, S. E. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch. Biochem. Biophys. 564, 265–280 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, R. & Henning, U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19, 1287–1294 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Patel, G. J., Behrens-Kneip, S., Holst, O. & Kleinschmidt, J. H. The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential. Biochemistry 48, 10235–10245 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Thoma, J., Burmann, B. M., Hiller, S. & Muller, D. J. Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins. Nature Struct. Mol. Biol. 22, 795–802 (2015).

    Article  CAS  Google Scholar 

  95. Schwalm, J., Mahoney, T. F., Soltes, G. R. & Silhavy, T. J. Role for Skp in LptD assembly in Escherichia coli. J. Bacteriol. 195, 3734–3742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Narita, S., Masui, C., Suzuki, T., Dohmae, N. & Akiyama, Y. Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli. Proc. Natl Acad. Sci. USA 110, E3612–E3621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hagan, C. L., Kim, S. & Kahne, D. Reconstitution of outer membrane protein assembly from purified components. Science 328, 890–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kleinschmidt, J. H. Membrane protein folding on the example of outer membrane protein A of Escherichia coli. Cell. Mol. Life Sci. 60, 1547–1558 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Masi, M., Duret, G., Delcour, A. H. & Misra, R. Folding and trimerization of signal sequence-less mature TolC in the cytoplasm of Escherichia coli. Microbiology 155, 1847–1857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rollauer, S. E., Sooreshjani, M. A., Noinaj, N. & Buchanan, S. K. Outer membrane protein biogenesis in Gram-negative bacteria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20150023 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Noinaj, N., Kuszak, A. J., Balusek, C., Gumbart, J. C. & Buchanan, S. K. Lateral opening and exit pore formation are required for BamA function. Structure 22, 1055–1062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Noinaj, N., Rollauer, S. E. & Buchanan, S. K. The β-barrel membrane protein insertase machinery from Gram-negative bacteria. Curr. Opin. Struct. Biol. 31, 35–42 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gu, Y. et al. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531, 64–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Selkrig, J. et al. Discovery of an archetypal protein transport system in bacterial outer membranes. Nature Struct. Mol. Biol. 19, 506–510 (2012).

    Article  CAS  Google Scholar 

  105. Selkrig, J., Leyton, D. L., Webb, C. T. & Lithgow, T. Assembly of β-barrel proteins into bacterial outer membranes. Biochim. Biophys. Acta 1843, 1542–1550 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Grijpstra, J., Arenas, J., Rutten, L. & Tommassen, J. Autotransporter secretion: varying on a theme. Res. Microbiol. 164, 562–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Ruiz-Perez, F. et al. Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. J. Bacteriol. 191, 6571–6583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rutherford, N., Charbonneau, M. E., Berthiaume, F., Betton, J. M. & Mourez, M. The periplasmic folding of a cysteineless autotransporter passenger domain interferes with its outer membrane translocation. J. Bacteriol. 188, 4111–4116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shen, H. H. et al. Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes. Nature Commun. 5, 5078 (2014).

  110. Gruss, F. et al. The structural basis of autotransporter translocation by TamA. Nature Struct. Mol. Biol. 20, 1318–1320 (2013).

    Article  CAS  Google Scholar 

  111. Ieva, R. & Bernstein, H. D. Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. Proc. Natl Acad. Sci. USA 106, 19120–19125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rossiter, A. E. et al. The essential β-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. J. Bacteriol. 193, 4250–4253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Braselmann, E. & Clark, P. L. Autotransporters: the cellular environment reshapes a folding mechanism to promote protein transport. J. Phys. Chem. Lett. 3, 1063–1071 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kang'ethe, W. & Bernstein, H. D. Stepwise folding of an autotransporter passenger domain is not essential for its secretion. J. Biol. Chem. 288, 35028–35038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bernstein, H. D. Looks can be deceiving: recent insights into the mechanism of protein secretion by the autotransporter pathway. Mol. Microbiol. 97, 205–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Van Gerven, N., Klein, R. D., Hultgren, S. J. & Remaut, H. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol. 23, 693–706 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Robinson, L. S., Ashman, E. M., Hultgren, S. J. & Chapman, M. R. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol. Microbiol. 59, 870–881 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shu, Q. et al. The E. coli CsgB nucleator of curli assembles to β-sheet oligomers that alter the CsgA fibrillization mechanism. Proc. Natl Acad. Sci. USA 109, 6502–6507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Geibel, S. & Waksman, G. The molecular dissection of the chaperone-usher pathway. Biochim. Biophys. Acta 1843, 1559–1567 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Korea, C. G., Badouraly, R., Prevost, M. C., Ghigo, J. M. & Beloin, C. Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. Environ. Microbiol. 12, 1957–1977 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Remaut, H. et al. Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133, 640–652 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Crespo, M. D. et al. Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. Nature Chem. Biol. 8, 707–713 (2012).

    Article  CAS  Google Scholar 

  125. Wai, S. N. et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115, 25–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Prehna, G. et al. A protein export pathway involving Escherichia coli porins. Structure 20, 1154–1166 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, E. Y. et al. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7, 3143–3153 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Rev. Microbiol. 13, 605–619 (2015).

    Article  CAS  Google Scholar 

  129. Fahie, M. et al. A non-classical assembly pathway of Escherichia coli pore-forming toxin cytolysin A. J. Biol. Chem. 288, 31042–31051 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nivaskumar, M. & Francetic, O. Type II secretion system: a magic beanstalk or a protein escalator. Biochim. Biophys. Acta 1843, 1568–1577 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Francetic, O., Belin, D., Badaut, C. & Pugsley, A. P. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. Embo J. 19, 6697–6703 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kleanthous, C. Swimming against the tide: progress and challenges in our understanding of colicin translocation. Nature Rev. Microbiol. 8, 843–848 (2010).

    Article  CAS  Google Scholar 

  133. Zakharov, S. D., Sharma, O., Zhalnina, M., Yamashita, E. & Cramer, W. A. Pathways of colicin import: utilization of BtuB, OmpF porin and the TolC drug-export protein. Biochem. Soc. Trans. 40, 1463–1468 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Housden, N. G. et al. Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF. Science 340, 1570–1574 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Zeth, K., Romer, C., Patzer, S. I. & Braun, V. Crystal structure of colicin M, a novel phosphatase specifically imported by Escherichia coli. J. Biol. Chem. 283, 25324–25331 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hullmann, J., Patzer, S. I., Romer, C., Hantke, K. & Braun, V. Periplasmic chaperone FkpA is essential for imported colicin M toxicity. Mol. Microbiol. 69, 926–937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Walsh, G. Biopharmaceutical benchmarks 2014. Nature Biotechnol. 32, 992–1000 (2014).

    Article  CAS  Google Scholar 

  138. Baeshen, M. N. et al. Production of biopharmaceuticals in E. coli: current scenario and future perspectives. J. Microbiol. Biotechnol. 25, 953–962 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Choi, J. H. & Lee, S. Y. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64, 625–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Schlapschy, M., Grimm, S. & Skerra, A. A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Protein Eng. Des. Sel. 19, 385–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Kolaj, O., Spada, S., Robin, S. & Wall, J. G. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb. Cell. Fact. 8, 9 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Rao, C. V. S., De Waelheyns, E., Economou, A. & Anne, J. Antibiotic targeting of the bacterial secretory pathway. Biochim. Biophys. Acta 1843, 1762–1783 (2014).

    Article  CAS  Google Scholar 

  143. Grandi, G. Bacterial surface proteins and vaccines. F1000 Biol. Rep. 2, 36 (2010).

  144. Unal, C. M., Schaar, V. & Riesbeck, K. Bacterial outer membrane vesicles in disease and preventive medicine. Semin. Immunopathol. 33, 395–408 (2011).

    Article  PubMed  CAS  Google Scholar 

  145. Kim, O. Y. et al. Immunization with Escherichia coli outer membrane vesicles protects bacteria-induced lethality via Th1 and Th17 cell responses. J. Immunol. 190, 4092–4102 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. van Bloois, E., Winter, R. T., Kolmar, H. & Fraaije, M. W. Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol. 29, 79–86 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Schuurmann, J., Quehl, P., Festel, G. & Jose, J. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl. Microbiol. Biotechnol. 98, 8031–8046 (2014).

    Article  PubMed  CAS  Google Scholar 

  148. Zajkoska, P., Rebros, M. & Rosenberg, M. Biocatalysis with immobilized Escherichia coli. Appl. Microbiol. Biotechnol. 97, 1441–1455 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Merdanovic, M., Clausen, T., Kaiser, M., Huber, R. & Ehrmann, M. Protein quality control in the bacterial periplasm. Annu. Rev. Microbiol. 65, 149–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Raivio, T. L. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim. Biophys. Acta. 1843, 1529–1541 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Bury-Mone, S. et al. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet. 5, e1000651 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Dartigalongue, C., Missiakas, D. & Raina, S. Characterization of the Escherichia coli σE regulon. J. Biol. Chem. 276, 20866–20875 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Sawa, J. et al. Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope. J. Biol. Chem. 286, 30680–30690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Malet, H. et al. Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ. Nature Struct. Mol. Biol. 19, 152–157 (2012).

    Article  CAS  Google Scholar 

  155. Price, N. L. & Raivio, T. L. Characterization of the Cpx regulon in Escherichia coli strain MC4100. J. Bacteriol. 191, 1798–1815 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Quan, S. et al. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nature Struct. Mol. Biol. 18, 262–269 (2011).

    Article  CAS  Google Scholar 

  157. Stull, F., Koldewey, P., Humes, J. R., Radford, S. E. & Bardwell, J. C. Substrate protein folds while it is bound to the ATP-independent chaperone Spy. Nature Struct. Mol. Biol. 23, 53–58 (2015).

    Article  CAS  Google Scholar 

  158. Cho, S. H. et al. Detecting envelope stress by monitoring β-barrel assembly. Cell 159, 1652–1664 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Raffa, R. G. & Raivio, T. L. A third envelope stress signal transduction pathway in Escherichia coli. Mol. Microbiol. 45, 1599–1611 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Joly, N. et al. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol. Rev. 34, 797–827 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Winter, J. & Jakob, U. Beyond transcription—new mechanisms for the regulation of molecular chaperones. Crit. Rev. Biochem. Mol. Biol. 39, 297–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Tapley, T. L. et al. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. Proc. Natl Acad. Sci. USA 106, 5557–5562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Malki, A. et al. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB. J. Biol. Chem. 283, 13679–13687 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Tapley, T. L., Franzmann, T. M., Chakraborty, S., Jakob, U. & Bardwell, J. C. Protein refolding by pH-triggered chaperone binding and release. Proc. Natl Acad. Sci. USA 107, 1071–1076 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, M. et al. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nature Chem. Biol. 7, 671–677 (2011).

    Article  CAS  Google Scholar 

  166. Walton, T. A. & Sousa, M. C. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15, 367–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Zaccai, N. R. et al. Deuterium labeling together with contrast variation small-angle neutron scattering suggests how Skp captures and releases unfolded outer membrane proteins. Methods Enzymol. 566, 159–210 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Geibel, S., Procko, E., Hultgren, S. J., Baker, D. & Waksman, G. Structural and energetic basis of folded-protein transport by the FimD usher. Nature 496, 243–246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nambu, T. & Kutsukake, K. The Salmonella FlgA protein, a putativeve periplasmic chaperone essential for flagellar P ring formation. Microbiology 146, 1171–1178 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Pandey, N. K., Pal, R. K., Kashyap, M. & Bhavesh, N. S. Cloning, purification, crystallization and preliminary X-ray diffraction studies of Escherichia coli PapD-like protein (EcpD). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68, 954–957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gotzke, H. et al. Identification of putative substrates for the periplasmic chaperone YfgM in Escherichia coli using quantitative proteomics. Mol. Cell Proteomics 14, 216–226 (2015).

    Article  PubMed  CAS  Google Scholar 

  172. Saul, F. A. et al. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. J. Mol. Biol. 335, 595–608 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Fleming and S. Krueger for providing Skp and Skp:OmpA structures; and T. Oas, J. F. Collet, H. Remaut, D. Rapoport and S. White for useful discussions. Our research is funded by grants (to A.E.): KUL-Spa (Onderzoekstoelagen 2013; Bijzonder Onderzoeksfonds; KU Leuven); RiMembR and T3RecS (Vlaanderen Onderzoeksprojecten (FWO)); StrepSynth (FP7 KBBE.2013.3.6-02: Synthetic Biology towards applications; #613877; European Union); DIP-BiD (AKUL/15/40 - G0H2116N; Hercules/FWO) and (to S.K.): G0B4915N; FWO. G.O. is an Onassis Foundation doctoral fellow. J.D.G. is an FWO doctoral fellow. V.Z. is a PDM KU Leuven and Rega foundation postdoctoral fellow.

Author information

Authors and Affiliations

Authors

Contributions

J.D.G. drafted the manuscript and prepared figures; A.T. prepared figures, assembled the table of periplasmic folding mechanisms and contributed to drafting; G.O. retrieved data from databases and performed bioinformatic analyses; V.Z. prepared figures and analysed PDB structures. A.E. and S.K. drafted and edited the manuscript. A.E. and S.K. conceived and guided the project. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Anastassios Economou or Spyridoula Karamanou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–5, Supplementary Tables 1 and 2 legends, Supplementary Table 3, Supplementary References (PDF 855 kb)

Supplementary Table 1

Sequence and structural features of E. coli K12 secretory and cytoplasmic proteins. (XLS 1646 kb)

Supplementary Table 2

Comparison of SCOP families in the secretome and cytoplasmic proteins. (XLS 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Geyter, J., Tsirigotaki, A., Orfanoudaki, G. et al. Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 1, 16107 (2016). https://doi.org/10.1038/nmicrobiol.2016.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing