Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NusA-dependent transcription termination prevents misregulation of global gene expression

A Corrigendum to this article was published on 13 June 2016

Abstract

Intrinsic transcription terminators consist of an RNA hairpin followed by a U-rich tract, and these signals can trigger termination without the involvement of additional factors. Although NusA is known to stimulate intrinsic termination in vitro, the in vivo targets and global impact of NusA are not known because it is essential for viability. Using genome-wide 3′ end-mapping on an engineered Bacillus subtilis NusA depletion strain, we show that weak suboptimal terminators are the principle NusA substrates. Moreover, a subclass of weak non-canonical terminators was identified that completely depend on NusA for effective termination. NusA-dependent terminators tend to have weak hairpins and/or distal U-tract interruptions, supporting a model in which NusA is directly involved in the termination mechanism. Depletion of NusA altered global gene expression directly and indirectly via readthrough of suboptimal terminators. Readthrough of NusA-dependent terminators caused misregulation of genes involved in essential cellular functions, especially DNA replication and metabolism. We further show that nusA is autoregulated by a transcription attenuation mechanism that does not rely on antiterminator structures. Instead, NusA-stimulated termination in its 5′ UTR dictates the extent of transcription into the operon, thereby ensuring tight control of cellular NusA levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of NusA and its effect at intrinsic terminators in vivo.
Figure 2: Effect of NusA on intrinsic termination in vivo and in vitro.
Figure 3: Terminator features contributing to stimulation by NusA.
Figure 4: NusA depletion alters expression of genes downstream of intrinsic terminators.
Figure 5: Autoregulation of nusA expression by NusA-mediated transcription attenuation.

Similar content being viewed by others

References

  1. Peters, J. M., Vangeloff, A. D. & Landick, R. Bacterial transcription terminators: the RNA 3′-end chronicles. J. Mol. Biol. 412, 793–813 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilson, K. S. & von Hippel, P. H. Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc. Natl Acad. Sci. USA 92, 8793–8797 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Komissarova, N., Becker, J., Solter, S., Kireeva, M. & Kashlev, M. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol. Cell 10, 1151–1162 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Mitra, A., Angamuthu, K., Jayashree, H. V. & Nagaraja, V. Occurrence, divergence and evolution of intrinsic terminators across eubacteria. Genomics 94, 110–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Potter, K. D., Merlino, N. M., Jacobs, T. & Gollnick, P. TRAP binding to the Bacillus subtilis trp leader region RNA causes efficient transcription termination at a weak intrinsic terminator. Nucleic Acids Res. 39, 2092–2102 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt, M. C. & Chamberlin, M. J. nusA protein of Escherichia coli is an efficient transcription termination factor for certain terminator sites. J. Mol. Biol. 195, 809–818 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Farnham, P. J., Greenblatt, J. & Platt, T. Effects of NusA protein on transcription termination in the tryptophan operon of Escherichia coli. Cell 29, 945–951 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Gusarov, I. & Nudler, E. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107, 437–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Yakhnin, A. V. & Babitzke, P. NusA-stimulated RNA polymerase pausing and termination participates in the Bacillus subtilis trp operon attenuation mechanism in vitro. Proc. Natl Acad. Sci. USA 99, 11067–11072 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Ingham, C. J., Dennis, J. & Furneaux, P. A. Autogenous regulation of transcription termination factor Rho and the requirement for Nus factors in Bacillus subtilis. Mol. Microbiol. 31, 651–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Cardinale, C. J. et al. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320, 935–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vogel, U. & Jensen, K. F. NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J. Biol. Chem. 272, 12265–12271 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Miller, C. M., Baumberg, S. & Stockley, P. G. Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites. Mol. Microbiol. 26, 37–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Yakhnin, A. V., Yakhnin, H. & Babitzke, P. Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. Proc. Natl Acad. Sci. USA 105, 16131–16136 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Yakhnin, A. V. & Babitzke, P. Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader. Mol. Microbiol. 76, 690–705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mah, T. F., Kuznedelov, K., Mushegian, A., Severinov, K. & Greenblatt, J. The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA. Genes Dev. 14, 2664–2675 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Worbs, M., Bourenkov, G. P., Bartunik, H. D., Huber, R. & Wahl, M. C. An extended RNA binding surface through arrayed S1 and KH domains in transcription factor NusA. Mol. Cell 7, 1177–1189 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, X. et al. (2009). The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Rep. 10, 997–1002 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ha, K. S., Toulokhonov, I., Vassylyev, D. G. & Landick, R. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J. Mol. Biol. 401, 708–725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Toulokhonov, I., Artsimovitch, I. & Landick, R. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292, 730–733 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Pan, T., Artsimovitch, I., Fang, X. W., Landick, R. & Sosnick, T. R. Folding of a large ribozyme during transcription and the effect of the elongation factor NusA. Proc. Natl Acad. Sci. USA 96, 9545–9550 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Cohen, S. E. et al. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc. Natl Acad. Sci. USA 107, 15517–15522 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335, 1103–1106 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Peters, J. M. et al. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 26, 2621–2633 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naville, M. & Gautheret, D. Premature terminator analysis sheds light on a hidden world of bacterial transcriptional attenuation. Genome Biol. 11, R97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davies, K. M., Dedman, A. J., van Horck, S. & Lewis, P. J. The NusA:RNA polymerase ratio is increased at sites of rRNA synthesis in Bacillus subtilis. Mol. Microbiol. 57, 366–379 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Yakhnin, H. et al. Complex regulation of the global regulatory gene csrA: CsrA-mediated translational repression, transcription from five promoters by Eσ70 and EσS, and indirect transcriptional activation by CsrA. Mol. Microbiol. 81, 689–704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Du, H. & Babitzke, P. trp RNA-binding attenuation protein-mediated long distance RNA refolding regulates translation of trpE in Bacillus subtilis. J. Biol. Chem. 273, 20494–20503 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Illumina library preparation and sequencing was performed at the Penn State Genomics Core Facility. The authors thank P. Lewis and M. Fujita for providing NusA and σA antibodies, respectively. E. coli NusA was provided by C. Squires. This work was supported by National Institutes of Health grant GM098399 to P.B.

Author information

Authors and Affiliations

Authors

Contributions

S.M. performed all experiments except for illumina library generation and sequencing. A.V.Y. discovered NusA-dependent termination in vitro. A.S. and I.A. processed raw sequencing data, mapped the sequencing reads to the genome and developed computational algorithms. P.B. and S.M. analysed the processed data. S.M. and P.B. wrote the manuscript. P.B. supervised the project.

Corresponding author

Correspondence to Paul Babitzke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, References and Figures 1–6. (PDF 1568 kb)

Supplementary Table 1

RNA 3′ ends identified by 3′ end-mapping. (XLSX 241 kb)

Supplementary Table 2

The effect of NusA on terminators. (XLSX 289 kb)

Supplementary Table 3

Genes that are differentially expressed twofold or more (p-adj < 0.05) upon NusA depletion. (XLSX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Yakhnin, A., Sebastian, A. et al. NusA-dependent transcription termination prevents misregulation of global gene expression. Nat Microbiol 1, 15007 (2016). https://doi.org/10.1038/nmicrobiol.2015.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2015.7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology