Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure

A Corrigendum to this article was published on 11 February 2016

Abstract

There is only limited understanding of the impact of high p(CO2) on soil biomes. We have studied a floodplain wetland where long-term emanations of temperate volcanic CO2 (mofettes) are associated with accumulation of carbon from the Earth's mantle. With an integrated approach using isotope geochemistry, soil activity measurements and multi-omics analyses, we demonstrate that high (nearly pure) CO2 concentrations have strongly affected pathways of carbon production and decomposition and therefore carbon turnover. In particular, a promotion of dark CO2 fixation significantly increased the input of geogenic carbon in the mofette when compared to a reference wetland soil exposed to normal levels of CO2. Radiocarbon analysis revealed that high quantities of mofette soil carbon originated from the assimilation of geogenic CO2 (up to 67%) via plant primary production and subsurface CO2 fixation. However, the preservation and accumulation of almost undegraded organic material appeared to be facilitated by the permanent exclusion of meso- to macroscopic eukaryotes and associated physical and/or ecological traits rather than an impaired biochemical potential for soil organic matter decomposition. Our study shows how CO2-induced changes in diversity and functions of the soil community can foster an unusual biogeochemical profile.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bulk soil geochemistry of mofette and reference.
Figure 2: Frequency profiles of transcripts with annotations of CAZY classes in mofette (Mof.) and reference (Ref.) metatranscriptomes.
Figure 3: Conceptual model summarizing the effects of extremely high CO2 concentration on major wetland floodplain soil enzymatic functions and soil food web diversity, as deduced from metatranscriptomes and metagenomes.
Figure 4: Rates of CO2 fixation and formation in mofette and reference soil incubations.

Similar content being viewed by others

References

  1. Kämpf, H., Bräuer, K., Schumann, J., Hahne, K. & Strauch, G. CO2 discharge in an active, non-volcanic continental rift area (Czech Republic): characterisation (δ13C, 3He/4He) and quantification of diffuse and vent CO2 emissions. Chem. Geol. 339, 71–83 (2013).

    Article  Google Scholar 

  2. Emiliani, C. Planet Earth: Cosmology, Geology, and the Evolution of Life and Environment (Cambridge Univ. Press, 1992).

    Google Scholar 

  3. Raven, J. A. The early evolution of land plants: aquatic ancestors and atmospheric interactions. Bot. J. Scotl. 47, 151–175 (1995).

    Article  Google Scholar 

  4. Young, J. N., Rickaby, R. E. M., Kapralov, M. V. & Filatov, D. A. Adaptive signals in algal RuBisCO reveal a history of ancient atmospheric carbon dioxide. Phil. Trans. R. Soc. Lond. B 367, 483–492 (2012).

    Article  Google Scholar 

  5. Blume, H.-P. & Felix-Henningsen, P. Reductosols: natural soils and technosols under reducing conditions without an aquic moisture regime. J. Plant Nutr. Soil Sci. 172, 808–820 (2009).

    Article  Google Scholar 

  6. Mehlhorn, J., Beulig, F., Küsel, K. & Planer-Friedrich, B. Carbon dioxide triggered metal(loid) mobilisation in a mofette. Chem. Geol. 382, 54–66 (2014).

    Article  Google Scholar 

  7. Rennert, T., Eusterhues, K., Pfanz, H. & Totsche, K. U. Influence of geogenic CO2 on mineral and organic soil constituents on a mofette site in the NW Czech Republic. Eur. J. Soil Sci. 62, 572–580 (2011).

    Article  Google Scholar 

  8. Beulig, F. et al. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette. ISME J. 9, 746–759 (2015).

    Article  Google Scholar 

  9. McInerney, M. J. & Bryant, M. P. in Biomass Conversion Processes for Energy and Fuels (eds Sofer, S. S. & Zaborsky, O. R. ) 277–296 (Springer, 1981).

    Book  Google Scholar 

  10. Ekschmitt, K. et al. Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J. Plant Nutr. Soil Sci. 171, 27–35 (2008).

    Article  Google Scholar 

  11. Burns, R. G. et al. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol. Biochem. 58, 216–234 (2013).

    Article  Google Scholar 

  12. Urich, T. et al. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3, e2527 (2008).

    Article  Google Scholar 

  13. Tveit, A., Schwacke, R., Svenning, M. M. & Urich, T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 7, 299–311 (2013).

    Article  Google Scholar 

  14. Tveit, A. T., Urich, T., Frenzel, P. & Svenning, M. M. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc. Natl Acad. Sci. USA 112, E2507–E2516 (2015).

    Article  Google Scholar 

  15. Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    Article  Google Scholar 

  16. Nieder, R. & Benbi, D. K. Carbon and Nitrogen in the Terrestrial Environment (Springer, 2008).

    Book  Google Scholar 

  17. Schrumpf, M. et al. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10, 1675–1691 (2013).

    Article  Google Scholar 

  18. Gleixner, G., Danier, H.-J., Werner, R. A. & Schmidt, H.-L. Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing Basidiomycetes. Plant Physiol. 102, 1287–1290 (1993).

    Article  Google Scholar 

  19. Werth, M. & Kuzyakov, Y. 13C fractionation at the root–microorganisms–soil interface: a review and outlook for partitioning studies. Soil Biol. Biochem. 42, 1372–1384 (2010).

    Article  Google Scholar 

  20. Conrad, R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org. Geochem. 36, 739–752 (2005).

    Article  Google Scholar 

  21. Heuer, V. B., Pohlman, J. W., Torres, M. E., Elvert, M. & Hinrichs, K.-U. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim. Cosmochim. Acta 73, 3323–3336 (2009).

    Article  Google Scholar 

  22. Rubino, M. et al. An isotopic method for testing the influence of leaf litter quality on carbon fluxes during decomposition. Oecologia 154, 155–166 (2007).

    Article  Google Scholar 

  23. Kleber, M., Mikutta, R., Torn, M. S. & Jahn, R. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur. J. Soil Sci. 56, 717–725 (2005).

    Google Scholar 

  24. Schneider, T. et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 6, 1749–1762 (2012).

    Article  Google Scholar 

  25. Benner, R., Maccubbin, A. E. & Hodson, R. E. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl. Environ. Microbiol. 47, 998–1004 (1984).

    Google Scholar 

  26. Deangelis, K. M. et al. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front. Microbiol. 4, 280 (2013).

    Article  Google Scholar 

  27. Breznak, J. A. & Brune, A. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39, 453–487 (1994).

    Article  Google Scholar 

  28. McSweeney, C. S., Dulieu, A., Katayama, Y. & Lowry, J. B. Solubilization of lignin by the ruminal anaerobic fungus Neocallimastix patriciarum. Appl. Environ. Microbiol. 60, 2985–2989 (1994).

    Google Scholar 

  29. García, A. et al. Characterization of lignins obtained by selective precipitation. Sep. Purif. Technol. 68, 193–198 (2009).

    Article  Google Scholar 

  30. Drake, L., Küsel, K. & Matthies, C. Acetogenic prokaryotes. Prokaryotes Prokaryotic Physiol. Biochem. 3–60 (2013).

  31. Kuever, J. in The Prokaryotes (eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. & Thompson, F. ) 281–288 (Springer, 2014).

    Book  Google Scholar 

  32. Müller, M. et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. MMBR 76, 444–495 (2012).

    Article  Google Scholar 

  33. Subramanian, V. et al. Profiling Chlamydomonas metabolism under dark, anoxic H2-producing conditions using a combined proteomic, transcriptomic, and metabolomic approach. J. Proteome Res. 13, 5431–5451 (2014).

    Article  Google Scholar 

  34. Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56, 99–131 (2005).

    Article  Google Scholar 

  35. Cardinale, B. J., Palmer, M. A. & Collins, S. L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).

    Article  Google Scholar 

  36. Lara, E., Mitchell, E. A. D., Moreira, D. & López García, P. Highly diverse and seasonally dynamic protist community in a pristine peat bog. Protist 162, 14–32 (2011).

    Article  Google Scholar 

  37. Van der Valk, A. G. The Biology of Freshwater Wetlands (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  38. Salih, F. M. Microalgae tolerance to high concentrations of carbon dioxide: a review. J. Environ. Prot. 2, 648–654 (2011).

    Article  Google Scholar 

  39. Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).

    Article  Google Scholar 

  40. Ward, N. L. et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 75, 2046–2056 (2009).

    Article  Google Scholar 

  41. Kuever, J., Rainey, F. A. & Widdel, F. in Bergey’s Manual® of Systematic Bacteriology (eds Brenner, D. J., Krieg, N. R. & Staley, J. T. ) 922–1144 (Springer, 2005).

    Book  Google Scholar 

  42. Bräuer, S. L., Cadillo-Quiroz, H., Ward, R. J., Yavitt, J. B. & Zinder, S. H. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int. J. Syst. Evol. Microbiol. 61, 45–52 (2011).

    Article  Google Scholar 

  43. Whitman, W., Boone, D., Koga, Y. & Keswani, J. Taxonomy of methanogenic archaea. Bergey’s Manual Syst. Bacteriol. 211–294 (2001).

  44. Kubo, K. et al. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012).

    Article  Google Scholar 

  45. Lindroth, A. et al. Environmental controls on the CO2 exchange in north European mires. Tellus B 59, 812–825 (2007).

    Article  Google Scholar 

  46. Waddington, J. M. & Roulet, N. T. Carbon balance of a boreal patterned peatland. Glob. Change Biol. 6, 87–97 (2000).

    Article  Google Scholar 

  47. Wu, J., Roulet, N. T., Sagerfors, J. & Nilsson, M. B. Simulation of six years of carbon fluxes for a sedge-dominated oligotrophic minerogenic peatland in Northern Sweden using the McGill Wetland Model (MWM). J. Geophys. Res. Biogeosci. 118, 795–807 (2013).

    Article  Google Scholar 

  48. Nowak, M. et al. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette. Biogeosci. Discuss. 12, 14555–14592 (2015).

    Article  Google Scholar 

  49. Mückenhausen, E. Die Bodenkunde und ihre geologischen, geomorphologischen und petrologischen Grundlagen (DLG-Verlag, 1993).

    Google Scholar 

  50. Kramer, C. & Gleixner, G. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol. Biochem. 38, 3267–3278 (2006).

    Article  Google Scholar 

  51. IUSS Working Group WRB. World Reference Base for Soil Resources 2006. World Soil Resources Report No. 103 (FAO, 2006).

  52. Ad-Hoc-AG Boden . Bodenkundliche Kartieranleitung 5th edn (Schweitzerbart'sche Verlagsbuchhandlung, 2005).

    Google Scholar 

  53. Reiche, M., Gleixner, G. & Küsel, K. Effect of peat quality on microbial greenhouse gas formation in an acidic fen. Biogeosciences 7, 187–198 (2010).

    Article  Google Scholar 

  54. Steinbeiss, S., Temperton, V. M. & Gleixner, G. Mechanisms of short-term soil carbon storage in experimental grasslands. Soil Biol. Biochem. 40, 2634–2642 (2008).

    Article  Google Scholar 

  55. Steinhof, A., Adamiec, G., Gleixner, G., Wagner, T. & van Klinken, G. The new 14C analysis laboratory in Jena, Germany. Radiocarbon 46, 51–58 (2007).

    Article  Google Scholar 

  56. Mook, W. G. & van der Plicht, J. Reporting 14C activities and concentrations. Radiocarbon 41, 227–239 (2006).

    Article  Google Scholar 

  57. Reiche, M., Hädrich, A., Lischeid, G. & Küsel, K. Impact of manipulated drought and heavy rainfall events on peat mineralization processes and source-sink functions of an acidic fen. J. Geophys. Res. Biogeosci. 114, G02021 (2009).

    Article  Google Scholar 

  58. Boschker, H. T. & Cappenberg, T. E. A sensitive method using 4-methylumbelliferyl-β-cellobiose as a substrate to measure (1,4)-β-glucanase activity in sediments. Appl. Environ. Microbiol. 60, 3592–3596 (1994).

    Google Scholar 

  59. Kang, H. & Freeman, C. Measurement of cellulase and xylosidase activities in peat using a sensitive fluorogenic compound assay. Commun. Soil Sci. Plant Anal. 29, 2769–2774 (1998).

    Article  Google Scholar 

  60. Lueders, T., Manefield, M. & Friedrich, M. W. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ. Microbiol. 6, 73–78 (2004).

    Article  Google Scholar 

  61. Lever, M. A. et al. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front. Microbiol. 6, 476 (2015).

    Article  Google Scholar 

  62. Meyer, F. et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 1–8 (2008).

    Article  Google Scholar 

  63. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  Google Scholar 

  64. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  Google Scholar 

  65. Lanzén, A. et al. CREST—classification resources for environmental sequence tags. PLoS ONE 7, e49334 (2012).

    Article  Google Scholar 

  66. Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

    Article  Google Scholar 

  67. Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).

    Article  Google Scholar 

  68. Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. M. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–4406 (2001).

    Article  Google Scholar 

  69. Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).

    Article  Google Scholar 

  70. Zhao, Y., Tang, H. & Ye, Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 28, 125–126 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank H. Pfanz for motivation to work on the studied mofettes, K. Henkel for assistance during thermogravimetric analysis, J. Wendt and H. Geilmann for assistance with TOC and δ13C-TOC analysis, A. Hädrich, D. Akob, C. Simon, J. Kuhr and S. Vetter for help during sampling, and S. Kolb for discussions. Sequencing was performed by the Norwegian Sequencing Centre (www.sequencing.uio.no), a national technology platform supported by the Functional Genomics and Infrastructure programmes of the Research Council of Norway and the Southeastern Regional Health Authorities. This work was funded by the Deutsche Forschungsgemeinschaft through grant KU1367/10-1, the graduate research training group ‘Alternation and element mobility at the microbe–mineral interface’ (GRK 1257) and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig.

Author information

Authors and Affiliations

Authors

Contributions

F.B. conceived, designed and performed the experiments, analysed the data and wrote the main paper. T.U. helped to design and analyse metatranscriptome and -genome sequencing experiments. M.N. performed radiocarbon measurements of soil and plant material and helped with 13C bulk soil measurements. S.E.T. and G.G. contributed to data discussion and structuring of the manuscript. G.D.G. and K.E.F. performed the metatranscriptome and -genome sequencing. F.B., K.K., S.E.T. and G.G. contributed to data discussion and structuring of the manuscript. All co-authors commented on and provided edits to the manuscript.

Corresponding author

Correspondence to Kirsten Küsel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–4 and Tables 1–4 (PDF 1310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beulig, F., Urich, T., Nowak, M. et al. Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure. Nat Microbiol 1, 15025 (2016). https://doi.org/10.1038/nmicrobiol.2015.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2015.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing