Article

Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations

  • Nature Microbiology 1, Article number: 15011 (2016)
  • doi:10.1038/nmicrobiol.2015.11
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Diverse organisms are associated with obligate microbial mutualists. How such essential symbionts have originated from free-living ancestors is of evolutionary interest. Here we report that, in natural populations of the stinkbug Plautia stali, obligate bacterial mutualists are evolving from environmental bacteria. Of six distinct bacterial lineages associated with insect populations, two are uncultivable with reduced genomes, four are cultivable with non-reduced genomes, one uncultivable symbiont is fixed in temperate populations, and the other uncultivable symbiont coexists with four cultivable symbionts in subtropical populations. Symbiont elimination resulted in host mortality for all symbionts, while re-infection with any of the symbionts restored normal host growth, indicating that all the symbionts are indispensable and almost equivalent functionally. Some aseptic newborns incubated with environmental soils acquired the cultivable symbionts and normal growth was restored, identifying them as environmental Pantoea spp. Our finding uncovers an evolutionary transition from a free-living lifestyle to obligate mutualism that is currently ongoing in nature.

  • Subscribe to Nature Microbiology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    The Symbiotic Habit (Princeton Univ. Press, 2010).

  2. 2.

    One Plus One Equals One: Symbiosis and the Evolution of Complex Life (Oxford Univ. Press, 2014).

  3. 3.

    Endosymbiosis of Animals with Plant Microorganisms (Interscience Publisher, 1965).

  4. 4.

    & Insect Symbiosis (CRC Press, 2003).

  5. 5.

    , & Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).

  6. 6.

    , , , & Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86 (2000).

  7. 7.

    et al. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature Genet. 32, 402–407 (2002).

  8. 8.

    , , , & Reductive evolution of bacterial genome in insect gut environment. Genome Biol. Evol. 3, 702–714 (2011).

  9. 9.

    et al. Symbiont-supplemented maternal investment underpinning host's ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).

  10. 10.

    Genome evolution in bacterial endosymbionts of insects. Nature Rev. Genet. 3, 850–861 (2002).

  11. 11.

    & Extreme genome reduction in symbiotic bacteria. Nature Rev. Microbiol. 10, 13–26 (2011).

  12. 12.

    & Heteroptera of Economic Importance (CRC, 2000).

  13. 13.

    , & Symbiont of brown-winged green bug, Plautia stali Scott. Jpn J. Appl. Entomol. Zool. 39, 109–115 (1995).

  14. 14.

    & Phylogenetic placement of pentatomid stink bug gut symbionts. Curr. Microbiol. 58, 64–69 (2009).

  15. 15.

    , , & Symbiont of the stink bug Plautia stali synthesizes rough-type lipopolysaccharide. Microbiol. Res. 167, 48–54 (2011).

  16. 16.

    , & in Microbial Ecology Research Trends (ed. Dijk, T. V.) 39–63 (Nova Science, 2008).

  17. 17.

    et al. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst. Appl. Microbiol. 31, 447–460 (2008).

  18. 18.

    , & An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2011).

  19. 19.

    , , & Polyphyly of gut symbionts in stinkbugs of the family Cydnidae. Appl. Environ. Microbiol. 78, 4758–4761 (2012).

  20. 20.

    , & The crypt-dwelling primary bacterial symbiont of the polyphagous pentatomid pest Halyomorpha halys (Hemiptera: Pentatomidae). Environ. Entomol. 43, 617–625 (2014).

  21. 21.

    , , & Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front. Microbiol. 5, 349 (2014).

  22. 22.

    & Unpredictable evolution in a 30-year study of Darwin's finches. Science 296, 707–711 (2002).

  23. 23.

    et al. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc. R. Soc. Lond. B 282, 1803 (2014).

  24. 24.

    Erwinia and related genera. Prokaryotes 6, 443–450 (2006).

  25. 25.

    & Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. Lond. B 273, 603–610 (2006).

  26. 26.

    , , & Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 5, e96 (2007).

  27. 27.

    , & Host plant specialization governed by facultative symbiont. Science 303, 1989 (2004).

  28. 28.

    , , & Obligate symbiont involved in pest status of host insect. Proc. R. Soc. Lond. B 274, 1979–1984 (2007).

  29. 29.

    et al. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect–bacterial symbioses. PLoS Pathog. 8, e1002990 (2012).

  30. 30.

    , , & Evolutionary origins and diversification of proteobacterial mutualists. Proc. R. Soc. Lond. B 281, 20132146 (2014).

  31. 31.

    & Development and reproduction of the oriental stink bug, Plautia stali (Hemiptera: Pentatomidae). Ann. Entomol. Soc. Am. 71, 756–757 (1978).

  32. 32.

    , , , & Strict host–symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol. 4, e337 (2006).

  33. 33.

    , & CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

  34. 34.

    , , , & MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

  35. 35.

    , , , & Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007).

Download references

Acknowledgements

The authors thank M. Baba, N. Baba, Y. G. Baba, D. Haraguchi, H. Hirayama, M. Hironaka, S. Kada, N. Kaiwa, Y. Kikuchi, K. Kizaki, S. Kudo, T. Makino, M. Moriyama, N. Nagata, S. Ohno, T. Ohtani, M. Ono, M. Sakakibara, H. Toju, K. Tsuji, N. Tsurusaki, T. Uesato, R. Ukuda, H. Watanabe and T. Yamaguchi for insect samples; J. Makino, N. Tanifuji, U. Asaga and W. Kikuchi for technical assistance; J. P. McCutcheon for comments on the manuscript; and Y. Nakajima and Y. Kikuchi for logistic and technical support. This study was supported by a JSPS KAKENHI grant (25221107) to T.F. and by the University of the Ryukyus Foundation to T.H., and Y.I. was supported by a JSPS Fellowship for Young Scientists.

Author information

Author notes

    • Takahiro Hosokawa

    Present address: Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.

Affiliations

  1. Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan

    • Takahiro Hosokawa
    • , Yoshiko Ishii
    •  & Takema Fukatsu
  2. Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan

    • Takahiro Hosokawa
  3. Department of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan

    • Naruo Nikoh
  4. DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan

    • Manabu Fujie
  5. Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan

    • Nori Satoh

Authors

  1. Search for Takahiro Hosokawa in:

  2. Search for Yoshiko Ishii in:

  3. Search for Naruo Nikoh in:

  4. Search for Manabu Fujie in:

  5. Search for Nori Satoh in:

  6. Search for Takema Fukatsu in:

Contributions

T.H. and T.F. designed the study. T.H. performed most experiments and data analyses. Y.I. conducted some symbiont-replacing experiments. N.N. analysed the symbiont genome data. M.F. and N.S. determined the draft genome sequences of the symbionts. T.H. and T.F. wrote the paper with input from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Takema Fukatsu.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures 1–8 and Tables 1–5.