Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recombineering in Mycobacterium tuberculosis

Abstract

Genetic dissection of M. tuberculosis is complicated by its slow growth and its high rate of illegitimate recombination relative to homologous DNA exchange. We report here the development of a facile allelic exchange system by identification and expression of mycobacteriophage-encoded recombination proteins, adapting a strategy developed previously for recombineering in Escherichia coli. Identifiable recombination proteins are rare in mycobacteriophages, and only 1 of 30 genomically characterized mycobacteriophages (Che9c) encodes homologs of both RecE and RecT. Expression and biochemical characterization show that Che9c gp60 and gp61 encode exonuclease and DNA-binding activities, respectively, and expression of these proteins substantially elevates recombination facilitating allelic exchange in both M. smegmatis and M. tuberculosis. Mycobacterial recombineering thus provides a simple approach for the construction of gene replacement mutants in both slow- and fast-growing mycobacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mycobacteriophage Che9c encodes RecE- and RecT-like proteins.
Figure 2: Targeted allelic exchange of the M. smegmatis leuD locus.
Figure 3: Allelic exchange of the M. smegmatis groEL1 gene.
Figure 4: Targeted gene replacement of the M. tuberculosis groEL1 locus.

Similar content being viewed by others

References

  1. Kalpana, G.V., Bloom, B.R. & Jacobs, W.R., Jr. Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl. Acad. Sci. USA 88, 5433–5437 (1991).

    Article  CAS  Google Scholar 

  2. Aldovini, A., Husson, R.N. & Young, R.A. The uraA locus and homologous recombination in Mycobacterium bovis BCG. J. Bacteriol. 175, 7282–7289 (1993).

    Article  CAS  Google Scholar 

  3. Husson, R.N., James, B.E. & Young, R.A. Gene replacement and expression of foreign DNA in mycobacteria. J. Bacteriol. 172, 519–524 (1990).

    Article  CAS  Google Scholar 

  4. Balasubramanian, V. et al. Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J. Bacteriol. 178, 273–279 (1996).

    Article  CAS  Google Scholar 

  5. Pashley, C.A., Parish, T., McAdam, R.A., Duncan, K. & Stoker, N.G. Gene replacement in mycobacteria by using incompatible plasmids. Appl. Environ. Microbiol. 69, 517–523 (2003).

    Article  CAS  Google Scholar 

  6. Pelicic, V., Reyrat, J.M. & Gicquel, B. Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol. Microbiol. 20, 919–925 (1996).

    Article  CAS  Google Scholar 

  7. Bardarov, S. et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017 (2002).

    Article  CAS  Google Scholar 

  8. Court, D.L., Sawitzke, J.A. & Thomason, L.C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

    Article  CAS  Google Scholar 

  9. Gottesman, M.M., Gottesman, M.E., Gottesman, S. & Gellert, M. Characterization of bacteriophage lambda reverse as an Escherichia coli phage carrying a unique set of host-derived recombination functions. J. Mol. Biol. 88, 471–487 (1974).

    Article  CAS  Google Scholar 

  10. Joseph, J.W. & Kolodner, R. Exonuclease VIII of Escherichia coli. II. Mechanism of action. J. Biol. Chem. 258, 10418–10424 (1983).

    CAS  PubMed  Google Scholar 

  11. Noirot, P. & Kolodner, R.D. DNA strand invasion promoted by Escherichia coli RecT protein. J. Biol. Chem. 273, 12274–12280 (1998).

    Article  CAS  Google Scholar 

  12. Li, Z., Karakousis, G., Chiu, S.K., Reddy, G. & Radding, C.M. The beta protein of phage lambda promotes strand exchange. J. Mol. Biol. 276, 733–744 (1998).

    Article  CAS  Google Scholar 

  13. Marsic, N., Roje, S., Stojiljkovic, I., Salaj-Smic, E. & Trgovcevic, Z. In vivo studies on the interaction of RecBCD enzyme and lambda Gam protein. J. Bacteriol. 175, 4738–4743 (1993).

    Article  CAS  Google Scholar 

  14. Murphy, K.C., Campellone, K.G. & Poteete, A.R. PCR-mediated gene replacement in Escherichia coli. Gene 246, 321–330 (2000).

    Article  CAS  Google Scholar 

  15. Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978–5983 (2000).

    Article  CAS  Google Scholar 

  16. Ellis, H.M., Yu, D., DiTizio, T. & Court, D.L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98, 6742–6746 (2001).

    Article  CAS  Google Scholar 

  17. Hatfull, G.F. et al. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genetics 2, e92 (2006).

    Article  Google Scholar 

  18. Chang, H.W. & Julin, D.A. Structure and function of the Escherichia coli RecE protein, a member of the RecB nuclease domain family. J. Biol. Chem. 276, 46004–46010 (2001).

    Article  CAS  Google Scholar 

  19. Muyrers, J.P., Zhang, Y., Buchholz, F. & Stewart, A.F. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev. 14, 1971–1982 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Iyer, L.M., Koonin, E.V. & Aravind, L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics 3, 8 (2002).

    Article  Google Scholar 

  21. Daugelat, S. et al. The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization. Microbes Infect. 5, 1082–1095 (2003).

    Article  CAS  Google Scholar 

  22. Parish, T., Mahenthiralingam, E., Draper, P., Davis, E.O. & Colston, M.J. Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143, 2267–2276 (1997).

    Article  CAS  Google Scholar 

  23. Hondalus, M.K. et al. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect. Immun. 68, 2888–2898 (2000).

    Article  CAS  Google Scholar 

  24. Ojha, A. et al. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123, 861–873 (2005).

    Article  CAS  Google Scholar 

  25. Lee, M.H., Pascopella, L., Jacobs, W.R., Jr. & Hatfull, G.F. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc. Natl. Acad. Sci. USA 88, 3111–3115 (1991).

    Article  CAS  Google Scholar 

  26. Lee, S. et al. Bxz1, a new generalized transducing phage for mycobacteria. FEMS Microbiol. Lett. 241, 271–276 (2004).

    Article  CAS  Google Scholar 

  27. Bibb, L.A. & Hatfull, G.F. Integration and excision of the Mycobacterium tuberculosis prophage-like element, phiRv1. Mol. Microbiol. 45, 1515–1526 (2002).

    Article  CAS  Google Scholar 

  28. Ghosh, P., Wasil, L.R. & Hatfull, G.F. Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol. 4, e186 (2006).

    Article  Google Scholar 

  29. Hall, S.D., Kane, M.F. & Kolodner, R.D. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J. Bacteriol. 175, 277–287 (1993).

    Article  CAS  Google Scholar 

  30. Wong, I. & Lohman, T.M. A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. Proc. Natl. Acad. Sci. USA 90, 5428–5432 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Scanlon for technical support, T. Hsu and W. Jacobs, Jr. for plasmids (pYUB854, p0004S, p0004S:leuB, p0004S:leuD), A. Schwacha and M. Bochman for help with DNA binding studies, J. Flynn and colleagues for help with M. tuberculosis manipulations, A. Ojha for comments on the manuscript and W. Jacobs Jr. for discussions. This work was support by US National Institutes of Health grant AI067649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham F Hatfull.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Biochemical properties of Che9c gp60 and gp61.

Supplementary Fig. 2

Recombineering frequencies are dependent on the length of DNA homology.

Supplementary Fig. 3

Full-length blots and gels.

Supplementary Table 1

Plasmids used in recombineering.

Supplementary Table 2

Oligonucleotides used in recombineering studies.

Supplementary Methods

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kessel, J., Hatfull, G. Recombineering in Mycobacterium tuberculosis. Nat Methods 4, 147–152 (2007). https://doi.org/10.1038/nmeth996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing