Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software

Abstract

Tandem mass spectrometry (MS/MS) allows for the rapid identification of many types of post-translational modifications (PTMs), especially those that can be detected by a diagnostic mass shift in one or more peptide fragment ions (for example, phosphorylation). But some PTMs (for example, SUMOs and other ubiquitin-like modifiers) themselves produce multiple fragment ions; combined with fragments from the modified target peptide, a complex overlapping fragmentation pattern is thus generated, which is uninterpretable by standard peptide sequencing software. Here we introduce SUMmOn, an automated pattern recognition tool that detects diagnostic PTM fragment ion series within complex MS/MS spectra, to identify modified peptides and modification sites within these peptides. Using SUMmOn, we demonstrate for the first time that human SUMO-1 multimerizes in vitro primarily via three N-terminal lysines, Lys7, Lys16 and Lys17. Notably, our method is theoretically applicable to any type of modification or chemical moiety generating a unique fragment ion pattern.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unmodified, phosphorylated and SUMOylated peptides.
Figure 2: SUMO protein sequences.
Figure 3: SUMmOn algorithm overview.
Figure 4: SUMmOn identifies a known RanGAP1 SUMOylation site.
Figure 5: SUMmOn analysis identifies SUMO-1 multimerization sites.

Similar content being viewed by others

References

  1. Aebersold, R. & Goodlett, D.R. Mass spectrometry in proteomics. Chem. Rev. 101, 269–295 (2001).

    Article  CAS  Google Scholar 

  2. Steen, H. & Mann, M. The ABC's (and XYZ's) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 5, 699–711 (2004).

    Article  CAS  Google Scholar 

  3. Schwartz, D.C. & Hochstrasser, M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321–328 (2003).

    Article  CAS  Google Scholar 

  4. Welchman, R.L., Gordon, C. & Mayer, R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599–609 (2005).

    Article  CAS  Google Scholar 

  5. Melchior, F. SUMO–nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591–626 (2000).

    Article  CAS  Google Scholar 

  6. Johnson, E.S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).

    Article  CAS  Google Scholar 

  7. Rosas-Acosta, G., Russell, W.K., Deyrieux, A., Russell, D.H. & Wilson, V.G. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell. Proteomics 4, 56–72 (2005).

    Article  CAS  Google Scholar 

  8. Vertegaal, A.C. et al. A proteomic study of SUMO-2 target proteins. J. Biol. Chem. 279, 33791–33798 (2004).

    Article  CAS  Google Scholar 

  9. Zhao, Y., Kwon, S.W., Anselmo, A., Kaur, K. & White, M.A. Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J. Biol. Chem. 279, 20999–21002 (2004).

    Article  CAS  Google Scholar 

  10. Li, T. et al. Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl. Acad. Sci. USA 101, 8551–8556 (2004).

    Article  CAS  Google Scholar 

  11. Gocke, C., Yu, H. & Kang, J. Systematic identification and analysis of mammalian SUMO substrates. J. Biol. Chem. 280, 5004–5012 (2005).

    Article  CAS  Google Scholar 

  12. Denison, C. et al. A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics 4, 246–254 (2005).

    Article  CAS  Google Scholar 

  13. Wykoff, D. & O'Shea, E. Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome. Mol. Cell. Proteomics 4, 73–83 (2005).

    Article  CAS  Google Scholar 

  14. Panse, V.G., Hardeland, U., Werner, T., Kuster, B. & Hurt, E. A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 279, 41346–41351 (2004).

    Article  CAS  Google Scholar 

  15. Hannich, J.T. et al. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280, 4102–4110 (2005).

    Article  CAS  Google Scholar 

  16. Wohlschlegel, J.A., Johnson, E.S., Reed, S.I. & Yates, J.R., III. Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279, 45662–45668 (2004).

    Article  CAS  Google Scholar 

  17. Rodriguez, M.S., Dargemont, C. & Hay, R.T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659 (2001).

    Article  CAS  Google Scholar 

  18. Sampson, D.A., Wang, M. & Matunis, M.J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664–21669 (2001).

    Article  CAS  Google Scholar 

  19. Kamitani, T. et al. Identification of three major sentrinization sites in PML. J. Biol. Chem. 273, 26675–26682 (1998).

    Article  CAS  Google Scholar 

  20. Eng, J.K., McCormack, A.L. & Yates, J.R., III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  21. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  Google Scholar 

  22. Matunis, M.J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470 (1996).

    Article  CAS  Google Scholar 

  23. Matunis, M.J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509 (1998).

    Article  CAS  Google Scholar 

  24. Rogers, R.S., Horvath, C.M. & Matunis, M.J. SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J. Biol. Chem. 278, 30091–30097 (2003).

    Article  CAS  Google Scholar 

  25. Tatham, M.H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

    Article  CAS  Google Scholar 

  26. Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).

    Article  CAS  Google Scholar 

  27. Yang, M., Hsu, C-T., Ting, C-Y., Liu, L.F. & Hwang, J. Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J. Biol. Chem. 281, 8264–8274 (2006).

    Article  CAS  Google Scholar 

  28. Pedrioli, P.G. et al. A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 22, 1459–1466 (2004).

    Article  CAS  Google Scholar 

  29. Gygi, S.P., Rist, B., Griffin, T.J., Eng, J. & Aebersold, R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome Res. 1, 47–54 (2002).

    Article  CAS  Google Scholar 

  30. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.-C. Gingras, J. Eng, O. Vitek, X. Li, A. Nesvizhskii and N. Zhang for technical advice and critical reading of the manuscript. This project was funded in part by federal funds from the US National Heart, Lung and Blood Institute, National Institutes of Health, under contract number N01-HV-28179. X.D.Z. and M.J.M. were supported by a grant from the National Institutes of Health (GM060980). B.R. holds the Canada Research Chair (Tier 2) in Proteomics and Molecular Medicine, with support from the Canada Foundation for Innovation, the Ontario Innovation Trust, and the McLaughlin Centre for Molecular Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Raught.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Screenshot of the introductory SUMmOn user interface. (PDF 456 kb)

Supplementary Fig. 2

SUMmOn identifies a known RanGAP1 conjugation site modified with SUMO-2 and a known RanGAP1 conjugation site modified with SUMO-3. (PDF 1788 kb)

Supplementary Fig. 3

SUMmOn identifies a known SUMO-2 conjugation site within SUMO-2. (PDF 320 kb)

Supplementary Fig. 4

SUMmOn identifies a known RanGAP1 conjugation site modified with Smt3. (PDF 1018 kb)

Supplementary Fig. 5

SUMmOn identifies SUMO conjugation sites in RanGAP1 and SUMO-1. (PDF 996 kb)

Supplementary Fig. 6

Identification of SUMO-1 multimerization sites. (PDF 540 kb)

Supplementary Table 1

Data used for modification site identification in this work. (PDF 93 kb)

Supplementary Table 2

SUMO sequence comparison. (PDF 218 kb)

Supplementary Methods (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrioli, P., Raught, B., Zhang, XD. et al. Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat Methods 3, 533–539 (2006). https://doi.org/10.1038/nmeth891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing