Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A visual thalamocortical slice

Abstract

We describe a thalamocortical slice preparation in which connectivity between the mouse lateral geniculate nucleus (LGN) and primary visual cortex (V1) is preserved. Through DiI injections in fixed brains we traced and created a three-dimensional model of the mouse visual pathways. From this computer model we designed a slice preparation that contains a projection from LGN to V1. We prepared brain slices with these predicted coordinates and demonstrated anatomical LGN-V1 connectivity in these slices after LGN tracer injections. We also revealed functional LGN-V1 connectivity by stimulating LGN electrically and detecting responses in layer 4 of V1 using calcium imaging, field potential recordings and whole-cell recordings. We also identified layer-4 neurons that receive direct thalamocortical input. Finally, we compared cortical activity after LGN stimulation with spontaneous cortical activity and found significant overlap of the spatiotemporal dynamics generated by both types of events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstruction of the mouse visual thalamocortical pathway.
Figure 2: CAD of visual thalamocortical slices.
Figure 3: Anatomical and functional connectivity from LGN to V1.
Figure 4: LGN stimulation activates neuronal ensembles in V1.
Figure 5: Layer-4 neurons receive direct input from the LGN.
Figure 6: Repeated spatiotemporal dynamics of activation in spontaneous and triggered network activity in visual cortex.

Similar content being viewed by others

References

  1. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Goffinet, A. & Rakic, P. (eds.) Mouse brain development (Springer-Verlag, New York, 2000).

    Book  Google Scholar 

  3. MacLean, J.N., Watson, B.O., Aaron, G.B. & Yuste, R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48, 811–823 (2005).

    Article  CAS  Google Scholar 

  4. Antonini, A., Fagiolini, M. & Stryker, M.P. Anatomical correlates of functional plasticity in mouse visual cortex. J. Neurosci. 19, 4388–4406 (1999).

    Article  CAS  Google Scholar 

  5. MacLean, J.N. & Yuste, R. A practical guide: Imaging action potentials with calcium indicators. In Imaging in Neuroscience and Development: a Laboratory Manual 2nd edn. (Yusle, R. and Konnerth, eds.) 351–355 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2005).

    Google Scholar 

  6. Yuste, R. & Katz, L.C. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6, 333–344 (1991).

    Article  CAS  Google Scholar 

  7. Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).

    Article  CAS  Google Scholar 

  8. Stratford, K.J., Tarczy-Hornoch, K., Martin, K.A., Bannister, N.J. & Jack, J.J. Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382, 258–261 (1996).

    Article  CAS  Google Scholar 

  9. Beierlein, M. & Connors, B.W. Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. J. Neurophysiol. 88, 1924–1932 (2002).

    Article  Google Scholar 

  10. Ferster, D. & Lindstrom, S. Synaptic excitation of neurones in area 17 of the cat by intracortical axon collaterals of cortico-geniculate cells. J. Physiol. (Lond.) 367, 233–252 (1985).

    Article  CAS  Google Scholar 

  11. Ferster, D. & Lindstrom, S. Augmenting responses evoked in area 17 of the cat by intracortical axon collaterals of cortico-geniculate cells. J. Physiol. (Lond.) 367, 217–232 (1985).

    Article  CAS  Google Scholar 

  12. Cossart, R., Aronov, D. & Yuste, R. Attractor dynamics of network UP states in the neocortex. Nature 423, 283–288 (2003).

    Article  CAS  Google Scholar 

  13. Cosans, C.E. & Ulinski, P.S. Spatial organization of axons in turtle visual cortex: intralamellar and interlamellar projections. J. Comp. Neurol. 296, 548–558 (1990).

    Article  CAS  Google Scholar 

  14. Muhlethaler, M., de Curtis, M., Walton, K. & Llinas, R. The isolated and perfused brain of the guinea-pig in vitro. Eur. J. Neurosci. 5, 915–926 (1993).

    Article  CAS  Google Scholar 

  15. Agmon, A. & Connors, B.W. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41, 365–379 (1991).

    Article  CAS  Google Scholar 

  16. Agmon, A. & Connors, B.W. Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J. Neurosci. 12, 319–329 (1992).

    Article  CAS  Google Scholar 

  17. Castro-Alamancos, M.A. & Connors, B.W. Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway. J. Neurosci. 16, 7742–7756 (1996).

    Article  CAS  Google Scholar 

  18. Castro-Alamancos, M.A. & Connors, B.W. Short-term plasticity of a thalamocortical pathway dynamically modulated by behavioral state. Science 272, 274–277 (1996).

    Article  CAS  Google Scholar 

  19. Castro-Alamancos, M.A. & Connors, B.W. Short-term synaptic enhancement and long-term potentiation in neocortex. Proc. Natl. Acad. Sci. USA 93, 1335–1339 (1996).

    Article  CAS  Google Scholar 

  20. Feldman, D.E., Nicoll, R.A. & Malenka, R.C. Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. J. Neurobiol. 41, 92–101 (1999).

    Article  CAS  Google Scholar 

  21. Beierlein, M., Fall, C.P., Rinzel, J. & Yuste, R. Thalamocortical bursts trigger recurrent activity in neocortical networks: layer 4 as a frequency-dependent gate. J. Neurosci. 22, 9885–9894 (2002).

    Article  CAS  Google Scholar 

  22. Cruikshank, S.J., Rose, H.J. & Metherate, R. Auditory thalamocortical synaptic transmission in vitro. J. Neurophysiol. 87, 361–384 (2002).

    Article  Google Scholar 

  23. Callaway, E.M. & Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 90, 7661–7665 (1993).

    Article  CAS  Google Scholar 

  24. McQuillen, P.S., DeFreitas, M.F., Zada, G. & Shatz, C.J. A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation. J. Neurosci. 22, 3580–3593 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Kelley, R. Urban and M. Weiss for help and members of the laboratory for comments. Supported by the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason N MacLean.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expansion of the tracing of DiI labeling in cortex shown in Figure 3b. (PDF 30 kb)

Supplementary Video 1

Stimulation of the LGN elicits network activity in V1. ΔF/F movie, frame rate is 6.6 Hz. At the end of frame 1, a stimulus was applied (110 μAmps, 40 Hz). Note how several neurons display time-locked calcium transients (increases in white level). (MOV 288 kb)

Supplementary Video 2

Both triggered and spontaneous events are shown side by side and progress at the same rate (each frame: 300 ms). Filled contours indicate active neurons. At the end of frame 2, a stimulus was applied (110 μAmps, 40 Hz). Note how several neurons display lockstep activations between both events. (AVI 754 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLean, J., Fenstermaker, V., Watson, B. et al. A visual thalamocortical slice. Nat Methods 3, 129–134 (2006). https://doi.org/10.1038/nmeth849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing