Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantification of random genomic mutations

Abstract

Cancer cells contain numerous clonal mutations. It has been theorized that malignant cells sustain an elevated mutation rate and, as a consequence, harbor yet larger numbers of random point mutations. Testing this hypothesis has been precluded by lack of an assay to measure random mutations—that is, mutations that occur in only one or a few cells of a population. We have established a method that has permitted us to detect and identify rare random mutations in human cells, at a frequency of 1 per 108 base pairs. The assay is based on gene capture, by hybridization with a uracil-containing probe, followed by magnetic separation. Mutations that render the mutational target sequence non-cleavable by a restriction enzyme are quantified by dilution to single molecules and real-time quantitative PCR amplification. The assay can be extended to quantify mutation in any DNA-based organism, at different sites in the genome, in introns and exons, in unselected and selected genes, and in proliferating and quiescent cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protocol for the random mutation capture assay.
Figure 2: Quantifying mutations in normal diploid human fibroblasts treated with ENU (500 ÎĽg/ml).
Figure 3: Enhancement of mutagenesis as a function of ENU exposure.
Figure 4: Mutation target neutrality.
Figure 5: Reconstruction experiment.

Similar content being viewed by others

References

  1. Bielas, J.H. & Loeb, L.A. Mutator phenotype in cancer: timing and perspectives. Environ. Mol. Mutagen (in the press).

  2. Jackson, A.L. & Loeb, L.A. The mutation rate and cancer. Genetics 148, 1483–1490 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cervantes, R.B., Stringer, J.R., Shao, C., Tischfield, J.A. & Stambrook, P.J. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc. Natl. Acad. Sci. USA 99, 3586–3590 (2002).

    Article  CAS  Google Scholar 

  4. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  5. Kallioniemi, A. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821 (1992).

    Article  CAS  Google Scholar 

  6. Bayani, J. et al. Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer. Res. 62, 3466–3476 (2002).

    CAS  PubMed  Google Scholar 

  7. Klein, C.A. et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc. Natl. Acad. Sci. USA 96, 4494–4499 (1999).

    Article  CAS  Google Scholar 

  8. Wang, T.L. et al. Prevalence of somatic alterations in the colorectal cancer cell genome. Proc. Natl. Acad. Sci. USA 99, 3076–3080 (2002).

    Article  CAS  Google Scholar 

  9. Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 117–183 (2004).

    Article  Google Scholar 

  10. Loeb, L.A., Springgate, C.F. & Battula, N. Errors in DNA replication as a basis of malignant change. Cancer Res. 34, 2311–2321 (1974).

    CAS  PubMed  Google Scholar 

  11. Loeb, L.A., Loeb, K.R. & Anderson, J.P. Multiple mutations and cancer. Proc. Natl. Acad. Sci. USA 100, 776–781 (2003).

    Article  CAS  Google Scholar 

  12. Patel, P.H. & Loeb, L.A. Multiple amino acid substitutions allow DNA polymerases to synthesize RNA. J. Biol. Chem. 275, 40266–40272 (2000).

    Article  CAS  Google Scholar 

  13. Bielas, J.H. & Heddle, J.A. Elevated mutagenesis and decreased DNA repair at a transgene are associated with proliferation but not apoptosis in p53-deficient cells. Proc. Natl. Acad. Sci. USA 100, 12853–12858 (2003).

    Article  CAS  Google Scholar 

  14. Mientjes, E.J. et al. DNA adducts, mutant frequencies, and mutation spectra in various organs of lambda lacZ mice exposed to ethylating agents. Environ. Mol. Mutagen. 31, 18–31 (1998).

    Article  CAS  Google Scholar 

  15. Masumura, K. et al. Spectra of gpt mutations in ethylnitrosourea-treated and untreated transgenic mice. Environ. Mol. Mutagen. 34, 1–8 (1999).

    Article  CAS  Google Scholar 

  16. Graw, J., Pretsch, W. & Loster, J. Mutation in intron 6 of the hamster Mitf gene leads to skipping of the subsequent exon and creates a novel animal model for the human Waardenburg syndrome type II. Genetics 164, 1035–1041 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rouer, E., Brule, F. & Benarous, R. A single base mutation in the 5′ splice site of intron 7 of the lck gene is responsible for the deletion of exon 7 in lck mRNA of the JCaM1 cell line. Oncogene 18, 4262–4268 (1999).

    Article  CAS  Google Scholar 

  18. Bielas, J.H. & Heddle, J.A. Quiescent murine cells lack global genomic repair but are proficient in transcription-coupled repair. DNA Repair (Amst.) 3, 711–717 (2004).

    Article  CAS  Google Scholar 

  19. Bielas, J.H. & Heddle, J.A. Proliferation is necessary for both repair and mutation in transgenic mouse cells. Proc. Natl. Acad. Sci. USA 97, 11391–11396 (2000).

    Article  CAS  Google Scholar 

  20. Parsons, B.L. & Heflich, R.H. Genotypic selection methods for the direct analysis of point mutations. Mutat. Res. 387, 97–121 (1997).

    Article  CAS  Google Scholar 

  21. Parry, J.M., Shamsher, M. & Skibinski, D.O. Restriction site mutation analysis, a proposed methodology for the detection and study of DNA base changes following mutagen exposure. Mutagenesis 5, 209–212 (1990).

    Article  CAS  Google Scholar 

  22. Steingrimsdottir, H. et al. Development of new molecular procedures for the detection of genetic alterations in man. Mutat. Res. 353, 109–121 (1996).

    Article  Google Scholar 

  23. Jenkins, G.J., Suzen, H.S., Sueiro, R.A. & Parry, J.M. The restriction site mutation assay: a review of the methodology development and the current status of the technique. Mutagenesis 14, 439–448 (1999).

    Article  CAS  Google Scholar 

  24. Hussain, S.P. et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res. 60, 3333–3337 (2000).

    CAS  PubMed  Google Scholar 

  25. Pourzand, C. & Cerutti, P. Genotypic mutation analysis by RFLP/PCR. Mutat. Res. 288, 113–121 (1993).

    Article  CAS  Google Scholar 

  26. Pourzand, C. & Cerutti, P. Mutagenesis of H-ras codons 11 and 12 in human fibroblasts by N-ethyl-N-nitrosourea. Carcinogenesis 14, 2193–2196 (1993).

    Article  CAS  Google Scholar 

  27. Makalowski, W. The human genome structure and organization. Acta Biochim. Pol. 48, 587–598 (2001).

    CAS  PubMed  Google Scholar 

  28. Lindahl, T. & Wood, R.D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    Article  CAS  Google Scholar 

  29. Santos, J.H., Meyer, J.N., Skorvaga, M., Annab, L.A. & Van Houten, B. Mitochondrial hTERT exacerbates free radical–mediated mtDNA damage. Aging Cell 3, 399–411 (2004).

    Article  CAS  Google Scholar 

  30. Loeb, L.A., Preston, B.D., Snow, E.T. & Schaaper, R.M. Apurinic sites as common intermediates in mutagenesis. Basic Life Sci. 38, 341–347 (1986).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Blank for insightful comments and critical reading of the manuscript, E. Glick and C. Heindel for advice, and N. Griner for excellent technical assistance. This work was funded by grants CA78885 and CA102029 from the US National Institutes of Health. J.H.B. is supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence A Loeb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielas, J., Loeb, L. Quantification of random genomic mutations. Nat Methods 2, 285–290 (2005). https://doi.org/10.1038/nmeth751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing