Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An extracellular matrix microarray for probing cellular differentiation

Abstract

We present an extracellular matrix (ECM) microarray platform for the culture of patterned cells atop combinatorial matrix mixtures. This platform enables the study of differentiation in response to a multitude of microenvironments in parallel. The fabrication process required only access to a standard robotic DNA spotter, off-the-shelf materials and 1,000 times less protein than conventional means of investigating cell-ECM interactions. To demonstrate its utility, we applied this platform to study the effects of 32 different combinations of five extracellular matrix molecules (collagen I, collagen III, collagen IV, laminin and fibronectin) on cellular differentiation in two contexts: maintenance of primary rat hepatocyte phenotype indicated by intracellular albumin staining and differentiation of mouse embryonic stem (ES) cells toward an early hepatic fate, indicated by expression of a β-galactosidase reporter fused to the fetal liver-specific gene, Ankrd17 (also known as gtar). Using this technique, we identified combinations of ECM that synergistically impacted both hepatocyte function and ES cell differentiation. This versatile technique can be easily adapted to other applications, as it is amenable to studying almost any insoluble microenvironmental cue in a combinatorial fashion and is compatible with several cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depiction of fabrication and use of ECM microarray.
Figure 2: Characterization of ECM microarray by indirect immunofluorescence.
Figure 3: Primary rat hepatocytes on ECM microarrays.
Figure 4: Cultured hepatocytes show differential intracellular albumin staining in response to matrix composition.
Figure 5: I114 ES cells differentiate on ECM microarrays.

Similar content being viewed by others

References

  1. Ding, S. et al. Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. USA 100, 7632–7637 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Revzin, A. et al. Designing a hepatocellular microenvironment with protein microarraying and poly(ethylene glycol) photolithography. Langmuir 20, 2999–3005 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Prudhomme, W., Daley, G.Q., Zandstra, P. & Lauffenburger, D.A. Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proc. Natl. Acad. Sci. USA 101, 2900–2905 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson, D.G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22, 863–866 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Meredith, J.E. Jr. et al. The regulation of growth and intracellular signaling by integrins. Endocr. Rev. 17, 207–220 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Comoglio, P.M., Boccaccio, C. & Trusolino, L. Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr. Opin. Cell Biol. 15, 565–571 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Hall, H.G., Farson, D.A. & Bissell, M.J. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc. Natl. Acad. Sci. USA 79, 4672–4676 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunn, J.C., Yarmush, M.L., Koebe, H.G. & Tompkins, R.G. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 3, 174–177 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Cukierman, E., Pankov, R., Stevens, D.R. & Yamada, K.M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Baatout, S. Endothelial differentiation using Matrigel (review). Anticancer Res. 17, 451–455 (1997).

    CAS  PubMed  Google Scholar 

  11. Lindberg, K. & Badylak, S.F. Porcine small intestinal submucosa (SIS): a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins. Burns 27, 254–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, P., Chan, W.C.W., Badylak, S. & Bhatia, S. Assessing the function of porcine liver-derived matrix: applications to hepatic tissue engineering. Tissue Eng. 10, 1046–1053 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Mann, B.K., Gobin, A.S., Tsai, A.T., Schmedlen, R.H. & West, J.L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22, 3045–3051 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Hern, D.L. & Hubbell, J.A. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39, 266–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Anseth, K.S., Shastri, V.R. & Langer, R. Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat. Biotechnol. 17, 156–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Singhvi, R. et al. Engineering cell-shape and function. Science 264, 696–698 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Bhatia, S.N., Yarmush, M.L. & Toner, M. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J. Biomed. Mater. Res. 34, 189–199 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Kane, R.S., Takayama, S., Ostuni, E., Ingber, D.E. & Whitesides, G.M. Patterning proteins and cells using soft lithography. Biomaterials 20, 2363–2376 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Houseman, B.T. & Mrksich, M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Falsey, J.R., Renil, M., Park, S., Li, S.J. & Lam, K.S. Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconj. Chem. 12, 346–353 (2001).

    Article  CAS  Google Scholar 

  23. Ziauddin, J. & Sabatini, D.M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Mousses, S. et al. RNAi microarray analysis in cultured mammalian cells. Genome Res. 13, 2341–2347 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forrester, L.M. et al. An induction gene trap screen in embryonic stem cells: Identification of genes that respond to retinoic acid in vitro. Proc. Natl. Acad. Sci. USA 93, 1677–1682 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Watt, A.J. et al. A gene trap integration provides an early in situ marker for hepatic specification of the foregut endoderm. Mech. Dev. 100, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Sudhakaran, P.R., Stamatoglou, S.C. & Hughes, R.C. Modulation of protein synthesis and secretion by substratum in primary cultures of rat hepatocytes. Exp. Cell Res. 167, 505–516 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Hughes, R.C. & Stamatoglou, S.C. Adhesive interactions and the metabolic activity of hepatocytes. J. Cell Sci. Suppl. 8, 273–291 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Freire, E. & Coelho-Sampaio, T. Self-assembly of laminin induced by acidic pH. J. Biol. Chem. 275, 817–822 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Nelson, C.M., Raghavan, S., Tan, J.L. & Chen, C.S. Degradation of micropatterned surfaces by cell-dependent and -independent processes. Langmuir 19, 1493–1499 (2003).

    Article  CAS  Google Scholar 

  31. Angenendt, P., Glokler, J., Murphy, D., Lehrach, H. & Cahill, D.J. Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal. Biochem. 309, 253–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Revzin, A. et al. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir 17, 5440–5447 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Koh, W.G., Revzin, A. & Pishko, M.V. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18, 2459–2462 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, C.O., Hong, S.-Y., Kim, M., Park, S.-M. & Park, J.W. Modification of indium-tin oxide (ITO) glass with aziridine provides a surface of high amine density. J. Colloid Interface Sci. 277, 499–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Timofeev, E., Kochetkova, S.V., Mirzabekov, A.D. & Florentiev, V.L. Regioselective immobilization of short oligonucleotides to acrylic copolymer gels. Nucleic Acids Res. 24, 3142–3148 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Massia, S.P. & Hubbell, J.A. An RGD spacing of 440 nm is sufficient for integrin α V β 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114, 1089–1100 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Mooney, D. et al. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J. Cell. Physiol. 151, 497–505 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Pinkse, G.G. et al. Hepatocyte survival depends on β1-integrin-mediated attachment of hepatocytes to hepatic extracellular matrix. Liver Int. 24, 218–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Martinez-Hernandez, A. & Amenta, P.S. The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch. A Pathol. Anat. Histopathol. 423, 1–11 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Stamatoglou, S.C., Enrich, C., Manson, M.M. & Hughes, R.C. Temporal changes in the expression and distribution of adhesion molecules during liver development and regeneration. J. Cell Biol. 116, 1507–1515 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Liu Tsang, V. Three-dimensional photopatterning of hydrogels containing living cells for hepatic tissue engineering. Ph.D. dissertation, University of California San Diego, La Jolla (2004).

    Google Scholar 

  42. Werb, Z., Tremble, P.M., Behrendtsen, O., Crowley, E. & Damsky, C.H. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol. 109, 877–889 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Pacifici, R. et al. Ligand binding to monocyte α5β1 integrin activates the α2β1 receptor via the α5 subunit cytoplasmic domain and protein kinase C. J. Immunol. 153, 2222–2233 (1994).

    CAS  PubMed  Google Scholar 

  44. Diegelmann, R.F., Guzelian, P.S., Gay, R. & Gay, S. Collagen formation by the hepatocyte in primary monolayer culture and in vivo. Science 219, 1343–1345 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Fashena, S.J. & Thomas, S.M. Signalling by adhesion receptors. Nat. Cell Biol. 2, E225–E229 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Schwartz, M.A. & Ginsberg, M.H. Networks and crosstalk: integrin signalling spreads. Nat. Cell Biol. 4, E65–E68 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Pacifici, R. et al. Collagen-induced release of interleukin 1 from human blood mononuclear cells. Potentiation by fibronectin binding to the α5β1 integrin. J. Clin. Invest. 89, 61–67 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, S., Harris, M. & Varner, J.A. Regulation of integrin αvβ3-mediated endothelial cell migration and angiogenesis by integrin α5β1 and protein kinase A. J. Biol. Chem. 275, 33920–33928 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Rathjen, J. et al. Directed differentiation of pluripotent cells to neural lineages: homogeneous formation and differentiation of a neurectoderm population. Development 129, 2649–2661 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Ying, Q.L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C. & Melton, D.A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Kelly, D.L. & Rizzino, A. DNA microarray analyses of genes regulated during the differentiation of embryonic stem cells. Mol. Reprod. Dev. 56, 113–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Hamazaki, T. et al. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 497, 15–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Yamada, T. et al. In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 20, 146–154 (2002).

    Article  PubMed  Google Scholar 

  56. Chinzei, R. et al. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 36, 22–29 (2002).

    Article  PubMed  Google Scholar 

  57. Ishizaka, S. et al. Development of hepatocytes from ES cells after transfection with the HNF-3β gene. FASEB J. 16, 1444–1446 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Jones, E.A., Tosh, D., Wilson, D.I., Lindsay, S. & Forrester, L.M. Hepatic differentiation of murine embryonic stem cells. Exp. Cell Res. 272, 15–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Subramanian, S. & Srienc, F. Quantitative analysis of transient gene expression in mammalian cells using the green fluorescent protein. J. Biotechnol. 49, 137–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Arenkov, P. et al. Protein microchips: use for immunoassay and enzymatic reactions. Anal. Biochem. 278, 123–131 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank L. Forrester (University of Edinburgh) for providing the I114 cell line, C. Largent (Cel Associates) and D. Schabacker (Argonne) for useful discussions about acrylamide-gel pad fabrication, T. Martinsky (Telechem) for printing parameters, J. Norwich (S. Chien Lab), R. Agustin (imaging, J. Price Lab), J. Emond and R. Lieber (biostatistics), S. Khetani (cell patterning), J. Felix (hepatocyte isolation) and O. Tran. Funding was generously provided by the US National Institutes of Health, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Science Foundation's Faculty Early Career Development (CAREER) Program and the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta N Bhatia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flaim, C., Chien, S. & Bhatia, S. An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2, 119–125 (2005). https://doi.org/10.1038/nmeth736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing