Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole-genome fractionation rapidly purifies DNA from centromeric regions

Abstract

The condensed centromeric regions of higher eukaryotic chromosomes contain satellite sequences, transposons and retroelements, as well as transcribed genes that perform a variety of functions. These chromosomal domains nucleate kinetochores, mediate sister chromatid cohesion and inhibit recombination, yet their characterization has often lagged behind that of chromosome arms. Here, we describe a whole-genome fractionation technique that rapidly identifies bacterial artificial chromosome (BAC) clones derived from plant centromeric regions. This approach, which relies on hybridization of methylated genomic DNA, revealed BACs that correspond to the genetically mapped and sequenced Arabidopsis thaliana centromeric regions. Extending this method to other species in the Brassicaceae family identified centromere-linked clones and provided genome-wide estimates of methylated DNA abundance. Sequencing these clones will elucidate the changes that occur during plant centromere evolution. This genomic fractionation technique could identify centromeric DNA in genomes with similar methylation and repetitive DNA content, including those from crops and mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Whole-genome fractionation of A. thaliana.
Figure 2: Abundance and location of BACs identified by whole-genome fractionation.
Figure 3: Localization of C. rubella class I BACs.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  2. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Palmer, L.E. et al. Maize genome sequencing by methylation filtration. Science 302, 2115–2117 (2003).

    Article  PubMed  Google Scholar 

  5. Initiative, T.A.G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  Google Scholar 

  6. Nagaki, K. et al. Sequencing of a rice centromere uncovers active genes. Nat. Genet. 36, 138–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Yasuhara, J.C., Marchetti, M., Fanti, L., Pimpinelli, S. & Wakimoto, B.T. A strategy for mapping the heterochromatin of chromosome 2 of Drosophila melanogaster. Genetica 117, 217–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Hoskins, R.A. et al. Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol. 3, 1–16 (2002).

    Article  Google Scholar 

  9. Inoue, K. et al. The 1.4-Mb CMT1A duplication/HNPP deletion genomic region reveals unique genome architectural features and provides insights into the recent evolution of new genes. Genome Res. 11, 1018–1033 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eder, V. et al. Chromosome 6 phylogeny in primates and centromere repositioning. Mol. Biol. Evol. 20, 1506–1512 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Thomas, J.W. et al. Pericentromeric duplications in the laboratory mouse. Genome Res. 13, 55–63 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maggert, K.A. & Karpen, G.H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158, 1615–1628 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bender, J. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem. Sci. 23, 252–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Ng, H.H. & Bird, A. DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Robertson, K.D. & Jones, P.A. DNA methylation: past, present and future directions. Carcinogenesis 21, 461–467 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Luo, S. & Preuss, D. Strand-biased DNA methylation associated with centromeric regions in Arabidopsis. Proc. Natl. Acad. Sci. USA 100, 11133–11138 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mozo, T., Fischer, S., Shizuya, H. & Altmann, T. Construction and characterization of the IGF Arabidopsis BAC library. Mol. Gen. Genet. 258, 562–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Choi, S., Creelman, R.A., Mullet, J.E. & Wing, R. Construction and characterization of a bacterial artificial chromosome library from Arabidopsis thaliana. Plant Mol. Biol. Rep. 13, 124–128 (1995).

    Article  Google Scholar 

  19. Marra, M. et al. A map for sequence analysis of the Arabidopsis thaliana genome. Nat. Genet. 22, 265–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Mozo, T. et al. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat. Genet. 22, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Copenhaver, G.P. et al. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468–2474 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Martinez-Zapater, J.M., Estelle, M.A. & Somerville, C.R. A highly repeated DNA sequence in Arabidopsis thaliana. Mol. Gen. Genet. 204, 417–423 (1986).

    Article  CAS  Google Scholar 

  23. Vongs, A., Kakutani, T., Martienssen, R.A. & Richards, E.J. Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Cloix, C. et al. Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res. 10, 679–690 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pelissier, T. et al. Athila, a new retroelement from Arabidopsis thaliana. Plant Mol. Biol. 29, 441–452 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Cold Spring Harbor Laboratory W.U.G.S.C., and PE Biosystems Arabidopsis Sequencing Consortium. The complete sequence of a heterochromatic island from a higher eukaryote. Cell 100, 377–386 (2000).

  27. Copenhaver, G.P. & Pikaard, C.S. RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J. 9, 259–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Stupar, R.M. et al. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc. Natl. Acad. Sci. USA 98, 5099–5103 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jacobsen, S.E. & Meyerowitz, E.M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1100–1103 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Koch, M., Haubold, B. & Mitchell-Olds, T. Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am. J. Bot. 88, 534–544 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Fiebig, A., Kimport, R. & Preuss, D. Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. Proc. Natl. Acad. Sci. USA 101, 3286–3291 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnston, J.S. et al. Evolution of genome size in the Brassicaceae. Ann. Bot. (Lond.) in the press (2004).

  33. Jeanpierre, M. et al. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet. 2, 731–735 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Rudd, M.K., Mays, R.W., Schwartz, S. & Willard, H.F. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol. Cell. Biol. 23, 7689–7697 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Csaikl, U.M. Comparative analysis of different DNA extraction protocols: a fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Mol. Biol. Rep. 16, 69–86 (1998).

    Article  CAS  Google Scholar 

  36. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  PubMed  Google Scholar 

  37. Schwarzacher, T. & Heslop-Harrison, J.S. Direct fluorochrome-labeled DNA probes for direct fluorescent in situ hybridization to chromosomes. Methods Mol. Biol. 28, 167–176 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a US National Science Foundation postdoctoral fellowship in bioinformatics (A.E.H.) and grants from the National Science Foundation, Atlantic Philanthropies and Howard Hughes Medical Institute. We thank E. Bray, K.C. Keith and R. Palanivelu for critical manuscript reading, G. Kettler for computational analyses and J. Mach for assistance with FISH protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne Preuss.

Ethics declarations

Competing interests

S.L. and D.P. hold shares in the company Chromatin Inc., which is constructing autonomous chromosomes in plants as vehicles for delivering commercially important traits to crops..

Supplementary information

Supplementary Table 1

Arabidopsis thaliana Class I BACs. (PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S., Hall, A., Hall, S. et al. Whole-genome fractionation rapidly purifies DNA from centromeric regions. Nat Methods 1, 67–71 (2004). https://doi.org/10.1038/nmeth703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing