Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted pre-mRNA modification for gene silencing and regulation

Abstract

Most eukaryotic box C/D small nucleolar (sno) or Cajal body–specific RNAs guide base pairing with target RNAs and direct site-specific 2′-O-methylation. We designed an artificial C/D RNA to target the branch point adenosine of ACT1 pre-mRNA to block its splicing. Saccharomyces cerevisiae expressing this guide RNA gene controlled by a GAL1 promoter grew normally on dextrose but not on galactose medium. The pre-mRNA was specifically 2′-O-methylated, prohibiting maturation of ACT1 mRNA. Targeting other adenosines in this region while maintaining almost identical complementarity did not affect ACT1 mRNA level or cell growth, suggesting that targeting the branch-point adenosine was truly 2′-O-methylation–specific rather than an antisense effect; moreover, only the 3′-most branch site adenosine served as the branch point. We targeted other essential intron-containing genes, and observed a similar phenotype. We demonstrated that a Box C/D RNA can guide modification at the pre-mRNA branch point, thus silencing its expression and inducing cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA-guided RNA 2′-O-methylation.
Figure 2: Box C/D RNA targeting ACT1 pre-mRNA impairs cell growth.
Figure 3: Act-BP-guide directs site-specific 2′-O-methylation.
Figure 4: Levels of ACT1 mRNA and ACT1 pre-mRNA in cells expressing or not expressing Act-BP-Guide.
Figure 5: Targeted 2′-O-methylation on other intron-containing genes.

Similar content being viewed by others

References

  1. Yu, Y.T., Terns, R.M. & Terns, M.P. Mechanisms and functions of RNA-guided RNA modification. in Topics in Current Genetics, vol. 12 (ed., Grosjean, H.) 223–262 (Springer-Verlag, New York, 2005).

    Google Scholar 

  2. Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145–148 (2002).

    Article  CAS  Google Scholar 

  3. Decatur, W.A. & Fournier, M.J. RNA-guided nucleotide modification of ribosomal and other RNAs. J. Biol. Chem. 278, 695–698 (2003).

    Article  CAS  Google Scholar 

  4. Weinstein, L.B. & Steitz, J.A. Guided tours: from precursor snoRNA to functional snoRNP. Curr. Opin. Cell Biol. 11, 378–384 (1999).

    Article  CAS  Google Scholar 

  5. Ni, J., Tien, A.L. & Fournier, M.J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89, 565–573 (1997).

    Article  CAS  Google Scholar 

  6. Ganot, P., Bortolin, M.L. & Kiss, T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89, 799–809 (1997).

    Article  CAS  Google Scholar 

  7. Kiss-Laszlo, Z., Henry, Y., Bachellerie, J.P., Caizergues-Ferrer, M. & Kiss, T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85, 1077–1088 (1996).

    Article  CAS  Google Scholar 

  8. Cavaille, J., Nicoloso, M. & Bachellerie, J.P. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383, 732–735 (1996).

    Article  CAS  Google Scholar 

  9. Burge, C.B., Tuschl, T. & Sharp, P.A. Splicing of precursors to mRNAs by the spliceosome. in The RNA World (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 525–560 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1999).

    Google Scholar 

  10. Yu, Y.T., Scharl, E.C., Smith, C.M. & Steitz, J.A. The growing world of small nuclear ribonucleoproteins. in The RNA World (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 487–524 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1999).

    Google Scholar 

  11. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  Google Scholar 

  12. Query, C.C., Moore, M.J. & Sharp, P.A. Branch nucleophile selection in pre-mRNA splicing: evidence for the bulged duplex model. Genes Dev. 8, 587–597 (1994).

    Article  CAS  Google Scholar 

  13. Lowe, T.M. & Eddy, S.R. A computational screen for methylation guide snoRNAs in yeast. Science 283, 1168–1171 (1999).

    Article  CAS  Google Scholar 

  14. Maden, B.E., Corbett, M.E., Heeney, P.A., Pugh, K. & Ajuh, P.M. Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 77, 22–29 (1995).

    Article  CAS  Google Scholar 

  15. Balakin, A.G., Smith, L. & Fournier, M.J. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86, 823–834 (1996).

    Article  CAS  Google Scholar 

  16. Darzacq, X. et al. Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 21, 2746–2756 (2002).

    Article  CAS  Google Scholar 

  17. Gall, J.G. A role for Cajal bodies in assembly of the nuclear transcription machinery. FEBS Lett. 498, 164–167 (2001).

    Article  CAS  Google Scholar 

  18. Gall, J.G. The centennial of the Cajal body. Nat. Rev. Mol. Cell Biol. 4, 975–980 (2003).

    Article  CAS  Google Scholar 

  19. Bertrand, E. & Bordonne, R. Assembly and traffic of small nuclear RNPs. Prog. Mol. Subcell. Biol. 35, 79–97 (2004).

    Article  Google Scholar 

  20. Mattaj, I.W. UsnRNP assembly and transport. in Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles (ed. Birnstiel, M.L.) 100–114 (Springer-Verlag Press, Heidelberg, 1988).

    Chapter  Google Scholar 

  21. Yu, Y.T. et al. Internal modification of U2 small nuclear (sn)RNA occurs in nucleoli of Xenopus oocytes. J. Cell Biol. 152, 1279–1288 (2001).

    Article  CAS  Google Scholar 

  22. Thompson, M., Haeusler, R.A., Good, P.D. & Engelke, D.R. Nucleolar clustering of dispersed tRNA genes. Science 302, 1399–1401 (2003).

    Article  CAS  Google Scholar 

  23. Bertrand, E., Houser-Scott, F., Kendall, A., Singer, R.H. & Engelke, D.R. Nucleolar localization of early tRNA processing. Genes Dev. 12, 2463–2468 (1998).

    Article  CAS  Google Scholar 

  24. Stanek, D. & Neugebauer, K.M. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J. Cell Biol. 166, 1015–1025 (2004).

    Article  CAS  Google Scholar 

  25. Gerbi, S.A. & Lange, T.S. All small nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP localize to nucleoli; Identification of the nucleolar localization element of U6 snRNA. Mol. Biol. Cell 13, 3123–3137 (2002).

    Article  CAS  Google Scholar 

  26. Frey, M.R. & Matera, A.G. RNA-mediated interaction of Cajal bodies and U2 snRNA genes. J. Cell Biol. 154, 499–509 (2001).

    Article  CAS  Google Scholar 

  27. Smith, K.P. & Lawrence, J.B. Interactions of U2 gene loci and their nuclear transcripts with Cajal (coiled) bodies: evidence for PreU2 within Cajal bodies. Mol. Biol. Cell 11, 2987–2998 (2000).

    Article  CAS  Google Scholar 

  28. Lange, T.S. & Gerbi, S.A. Transient nucleolar localization of U6 small nuclear RNA in Xenopus laevis oocytes. Mol. Biol. Cell 11, 2419–2428 (2000).

    Article  CAS  Google Scholar 

  29. Sleeman, J., Lyon, C.E., Platani, M., Kreivi, J.P. & Lamond, A.I. Dynamic interactions between splicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein. Exp. Cell Res. 243, 290–304 (1998).

    Article  CAS  Google Scholar 

  30. Verheggen, C. et al. Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J. 20, 5480–5490 (2001).

    Article  CAS  Google Scholar 

  31. Verheggen, C. et al. Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments. EMBO J. 21, 2736–2745 (2002).

    Article  CAS  Google Scholar 

  32. Narayanan, A., Speckmann, W., Terns, R. & Terns, M.P. Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol. Biol. Cell 10, 2131–2147 (1999).

    Article  CAS  Google Scholar 

  33. Speckmann, W., Narayanan, A., Terns, R. & Terns, M.P. Nuclear retention elements of U3 small nucleolar RNA. Mol. Cell. Biol. 19, 8412–8421 (1999).

    Article  CAS  Google Scholar 

  34. Zhao, X., Li, Z.H., Terns, R.M., Terns, M.P. & Yu, Y.T. An H/ACA guide RNA directs U2 pseudouridylation at two different sites in the branchpoint recognition region in Xenopus oocytes. RNA 8, 1515–1525 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, X. et al. Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism. EMBO J. 24, 2403–2413 (2005).

    Article  CAS  Google Scholar 

  36. Cavaille, J. et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl. Acad. Sci. USA 97, 14311–14316 (2000).

    Article  CAS  Google Scholar 

  37. Kishore, S. & Stamm, S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311, 230–232 (2006).

    Article  CAS  Google Scholar 

  38. Hannon, G.J., Maroney, P.A., Denker, J.A. & Nilsen, T.W. Trans splicing of nematode pre-messenger RNA in vitro. Cell 61, 1247–1255 (1990).

    Article  CAS  Google Scholar 

  39. Tycowski, K.T., Shu, M.D. & Steitz, J.A. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379, 464–466 (1996).

    Article  CAS  Google Scholar 

  40. Amberg, D.C., Burke, D.J. & Strathern, J.N. Methods in Yeast Genetics (A Cold Spring Harbor Laboratory Course Manual), (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2005).

    Google Scholar 

Download references

Acknowledgements

We thank members of the Yu laboratory for valuable discussions. This work was supported by grants GM62937 and GM078223 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tao Yu.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–3 (PDF 782 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Yu, YT. Targeted pre-mRNA modification for gene silencing and regulation. Nat Methods 5, 95–100 (2008). https://doi.org/10.1038/nmeth1142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing