Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prion strain discrimination using luminescent conjugated polymers

Abstract

The occurrence of multiple strains of prions may reflect conformational variability of PrPSc, a disease-associated, aggregated variant of the cellular prion protein, PrPC. Here we used luminescent conjugated polymers (LCPs), which emit conformation-dependent fluorescence spectra, for characterizing prion strains. LCP reactivity and emission spectra of brain sections discriminated among four immunohistochemically indistinguishable, serially mouse-passaged prion strains derived from sheep scrapie, chronic wasting disease (CWD), bovine spongiform encephalopathy (BSE), and mouse-adapted Rocky Mountain Laboratory scrapie prions. Furthermore, using LCPs we differentiated between field isolates of BSE and bovine amyloidotic spongiform encephalopathy, and identified noncongophilic deposits in prion-infected deer and sheep. We found that fibrils with distinct morphologies generated from chemically identical recombinant PrP yielded unique LCP spectra, suggesting that spectral characteristic differences resulted from distinct supramolecular PrP structures. LCPs may help to detect structural differences among discrete protein aggregates and to link protein conformational features with disease phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disease phenotypes generated with four prion strains in tga20 and wild-type mice.
Figure 2: LCP staining patterns distinguish prion strains in mouse formalin-fixed brain sections.
Figure 3: PTAA and thioflavin T staining of PrP deposits in prion-infected brain cryosections.
Figure 4: Spectral data of mouse PrP deposits stained with PTAA and of recombinant mouse PrP fibrils stained by thioflavin T, PTAA or PTMI.
Figure 5: LCP and PrP antibody stains of natural cases of BSE and BASE in cattle, CWD in mule deer and scrapie in sheep.

Similar content being viewed by others

References

  1. Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Fraser, H. & Dickinson, A.G. The sequential development of the brain lesion of scrapie in three strains of mice. J. Comp. Pathol. 78, 301–311 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. Fraser, H. & Dickinson, A.G. Scrapie in mice. Agent-strain differences in the distribution and intensity of grey matter vacuolation. J. Comp. Pathol. 83, 29–40 (1973).

    Article  CAS  PubMed  Google Scholar 

  4. Bruce, M.E., McBride, P.A. & Farquhar, C.F. Precise targeting of the pathology of the sialoglycoprotein, PrP, and vacuolar degeneration in mouse scrapie. Neurosci. Lett. 102, 1–6 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Bessen, R.A. & Marsh, R.F. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096–2101 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Polymenidou, M. et al. Coexistence of multiple PrPSc types in individuals with Creutzfeldt-Jakob disease. Lancet Neurol. 4, 805–814 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hill, A.F. et al. Distinct glycoform ratios of protease resistant prion protein associated with PRNP point mutations. Brain 129, 676–685 (2006).

    Article  PubMed  Google Scholar 

  8. Safar, J. et al. Eight prion strains have PrP(Sc) molecules with different conformations. Nat. Med. 4, 1157–1165 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Peretz, D. et al. A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron 34, 921–932 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Aguzzi, A. Understanding the diversity of prions. Nat. Cell Biol. 6, 290–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Weissmann, C. A 'unified theory' of prion propagation. Nature 352, 679–683 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Nilsson, K.P.R., Herland, A., Hammarstrom, P. & Inganas, O. Conjugated polyelectrolytes: conformation-sensitive optical probes for detection of amyloid fibril formation. Biochemistry 44, 3718–3724 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Nilsson, K.P.R. et al. Conjugated polyelectrolytes-conformation-sensitive optical probes for staining and characterization of amyloid deposits. ChemBioChem 7, 1096–1104 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Nilsson, K.P., Rydberg, J., Baltzer, L. & Inganas, O. Self-assembly of synthetic peptides control conformation and optical properties of a zwitterionic polythiophene derivative. Proc. Natl. Acad. Sci. USA 100, 10170–10174 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nilsson, K.P.R., Rydberg, J., Baltzer, L. & Inganas, O. Twisting macromolecular chains: self-assembly of a chiral supermolecule from nonchiral polythiophene polyanions and random-coil synthetic peptides. Proc. Natl. Acad. Sci. USA 101, 11197–11202 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sigurdson, C.J. et al. Strain fidelity of chronic wasting disease upon murine adaptation. J. Virol. 80, 12303–12311 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bruce, M.E., McConnell, I., Fraser, H. & Dickinson, A.G. The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J. Gen. Virol. 72, 595–603 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Ding, L., Jonforsen, M., Roman, L.S., Andersson, M.R. & Inganas, O. Photovoltaic cells with a conjugated polyelectrolyte. Synth. Met. 110, 133–140 (2000).

    Article  CAS  Google Scholar 

  20. Ho, H.-A. et al. Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew. Chem. Int. Edn. Engl. 41, 1548–1551 (2002).

    Article  CAS  Google Scholar 

  21. Andersson, M.R. et al. Improved photoluminescence efficiency of films from conjugated polymers. Synth. Met. 85, 1383–1384 (1997).

    Article  CAS  Google Scholar 

  22. Berggren, M. et al. Controlling inter-chain and intra-chain excitations of a poly(thiophene) derivative in thin films. Chem. Phys. Lett. 304, 84–90 (1999).

    Article  CAS  Google Scholar 

  23. Nilsson, K.P.R., Andersson, M.R. & Inganas, O. Conformational transitions of a free amino-acid-functionalized polythiophene induced by different buffer systems. J. Phys. Condens. Matter 14, 10011–10020 (2002).

    Article  CAS  Google Scholar 

  24. Petkova, A.T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 307, 262–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Jimenez, J.L. et al. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA 99, 9196–9201 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Apetri, A.C., Vanik, D.L. & Surewicz, W.K. Polymorphism at residue 129 modulates the conformational conversion of the D178N variant of human prion protein 90–231. Biochemistry 44, 15880–15888 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bocharova, O.V., Breydo, L., Parfenov, A.S., Salnikov, V.V. & Baskakov, I.V. In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J. Mol. Biol. 346, 645–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Casalone, C. et al. Identification of a second bovine amyloidotic spongiform encephalopathy: molecular similarities with sporadic Creutzfeldt-Jakob disease. Proc. Natl. Acad. Sci. USA 101, 3065–3070 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Asante, E.A. et al. BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J. 21, 6358–6366 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meyer-Luehmann, M. et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the European Union (Tseur to A.A. and Understanding Protein Misfolding and Aggregation by NMR (UPMAN) to K.W.), the Swiss National Science Foundation, the Swiss National Competence Centers for Research on Neural Plasticity and Repair (A.A.) and on Structural Biology (K.W.), US National Institutes of Health K08-AI01802 (C.J.S.), the Foundation for Research at the University of Zürich (C.J.S.), the US National Prion Research Program (C.J.S. and A.A.), the Knut and Alice Wallenberg foundation (K.P.R.N.), the Swedish Foundation for Strategic Research (P.H.), the Wenner-Gren Foundations and the Swedish Research Council (P.H.), and the Natural Sciences and Engineering Research Council of Canada (M.L.). We thank P. Vilkman, S. Fransson and C. von Schroetter for providing technical support, P. Tittmann (Electron Microscopy Center, ETH Zurich) for providing electron microscopy services, the staff at the confocal microscopy centers at the ETH Zurich and at the University of Zurich for help with spectral collection, B. Seifert for help with statistical analysis, and C. Casalone (Istituto Zooprofilattico Sperimentale del Piemonte), F. Ehrensperger (University of Zürich), M. Miller (Colorado Division of Wildlife) and K. O'Rourke (United States Department of Agriculture) for BASE, BSE, CWD and sheep scrapie brain samples, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Aguzzi.

Ethics declarations

Competing interests

K.P.R.N. is part owner of a company commercializing the LCPs and the methods described in this article.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–4, Supplementary Methods (PDF 746 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigurdson, C., Nilsson, K., Hornemann, S. et al. Prion strain discrimination using luminescent conjugated polymers. Nat Methods 4, 1023–1030 (2007). https://doi.org/10.1038/nmeth1131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing