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In the version of this paper originally published, the name of and reference to the algorithm in the rightmost column of Table 1 were incorrect. 
The correct reference (ref. 40) has been added in the paper. The error has been corrected in the PDF and HTML versions of the article.
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After the publication of our paper, we identified a mistake in 
Table 1 regarding the comparison of our program, Waltz, to the 
program 3D profile1 (ref. 25 in our paper); we cited the wrong 
name and reference of the algorithm in the right column. This 
error has been corrected after print to refer to the algorithm we 
actually used, the method described in reference 2 (ref. 40 in the 
corrected paper). However, as the 3D profile1 method developed 
in the Eisenberg laboratory has a long-standing good reputation 
as an amyloid prediction tool, here we compare it to Waltz. An 
improved version of 3D profile3 was published about a week and 
a half before our paper, so for complete transparency we also 
compare Waltz to the improved 3D profile algorithm.

In Table 1 we list all predicted peptides and scores or energies, 
respectively, comparing Waltz (threshold 77, running on our web-
server at http://waltz.switchlab.org/) with the 3D profile1 scores 
at the ZipperDB website (http://services.mbi.ucla.edu/zipperdb; 
energy threshold was –23; additional shape complementarity > 0.7 
for the 3D profile 2010 version3). The sensitivity of 3D profile on 
our sup35 positive set was 67% (75% if one includes prediction of 
a hexapeptide that is almost but not fully included in the tested 
decapeptide).

However, the higher sensitivity of 3D profile comes at a cost 
of lower specificity (more false positives). To estimate the rate 
of false positives, we derived a reliable negative set from our 
experimental data for sup35, which included all decapeptides 
that did not form fibers under the unified experimental condi-
tions and did not overlap with any positively tested one (31 in 
total). However, we cannot draw hard conclusions as the avail-
ability of bona fide experimental data is typically limiting and 
these numbers are too low for a good general comparison. An 
additional complication is that 3D profile is designed to predict 
hexapeptides; as next best approximation we defined the best 
score or energy of a fully included hexapeptide as prediction for 
the respective peptides. Owing to this limitation and the fact that 
well-predicted hexapeptides may actually form amyloid fibers 
and the longer decapeptide does not, it may be wiser to exclude 

such peptides in an alternative comparison with only 26 ‘negative’ 
peptides, the reduced benchmark set (‘–5’) (Table 1).

Sensitivities of predictors should either be compared at similar 
levels of specificity (as should be done in consensus methods, 
such as AmylPred4), or one needs to consider both sensitivity and 
specificity together. Established measures for this are the Matthew 
correlation coefficient and the probability excess5. Probability 
excess has the additional advantage that it is also independent of 
set size inequalities6, which are not considered in other measures 
such as accuracy and precision.

The resulting performance statistics are reported in Table 2. 
Although 3D profile 2006 version1 predicted several additional 
false positives compared to Waltz, the improved 3D profile 2010 
version3 filtered out several of these. Considering the possibility 
that high-scoring hexapeptides may indeed form fibers outside of 
the experimentally tested decapeptide context, the performances 
of Waltz and 3D profile (2010 version)3 become comparable over 
the reduced benchmark set (‘–5’). In fact, the observed differences 

Figure 1 | Comparison of ROC curve performance on the AmylHex dataset.
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may well be within the error of performance estimation given the 
small benchmark set.

We also performed a receiver operating characteristics (ROC) 
curve analysis to benchmark the performance of Waltz, 3D 

profile 2006 version1, Tango7, Packing8 and Aggrescan9 on the 
AmylHex dataset1 (Fig. 1). The AmylHex dataset is an experi-
mentally validated set of hexapeptides containing 67 posi-
tive (amyloid forming) and 91 negative (non–fiber forming) 

table 1 | Comparison of true positives and false positives identified by Waltz and 3D profile for sup35-derived peptides
From 
amino 
acid

to amino 
acid

experimental 
peptide

Predicted 
peptide,  
Waltz Waltz score Waltz

Predicted 
peptide,  
3d profile

3d profile 
energy 

3d profile sC 
(2010 version)

3d profile 
(2006 version)

3d profile 
(2010 version)

Positives
7 16 GNNQQNYQQY NQQNYQQY 98.3 + NNQQNY –24.8 0.715 + +

16 25 YSQNGNQQQG YSQNGNQQQG 65.6 – GNQQQG –23.1 0.928 + +

28 37 RYQGYQAYNA RYQGYQAYNA 92.8 + QGYQAY –23 0.89 + +

43 52 GGYYQNYQGY YYQNYQGY 98.0 + GYYQNY –26.4 0.827 + +

46 55 YQNYQGYSGY NYQGYSGY 80.7 + QNYQGY –21.9 0.904 – –

52 61 YSGYQQGGYQ QQGGYQ 77.9 + QQGGYQ –22.4 0.797 – –

55 64 YQQGGYQQYN GYQQYN 92.0 + GGYQQY –25.6 0.838 + +

94 103 PQGGRGNYKN GRGNYKN 52.2 – GGRGNY –19.4 0.901 –a –a

103 112 NFNYNNNLQG NFNYNNNLQG 81.6 + NYNNNL –23.4 0.861 + +

106 115 YNNNLQGYQA NLQGYQA 82.9 + NNLQGY –24.1 0.85 + +

109 118 NLQGYQAGFQ NLQGYQAGFQ 81.1 + GYQAGF –23.8 0.894 + +

127 136 NDFQKQQKQA DFQKQQKQA 57.2 – QKQQKQ –22.7 0.665 – –

negatives
67 76 AGYQQQYNPQb YQQQYNPQb 92.6 + GYQQQYb –25.7 0.928 + +

70 79 QQQYNPQGGY – – –

73 82 YNPQGGYQQY – – –

76 85 QGGYQQYNPQb GYQQYNPQb 92.0 + GGYQQYb –25.6 0.838 + +

79 88 YQQYNPQGGY – – –

82 91 YNPQGGYQQQb – GGYQQQb –24.2 0.84 + +

139 148 KPKKTLKLVS – TLKLVS –24.6 0.626 + –

142 151 KTLKLVSSSG – LVSSSG –25 0.526 + –

145 154 KLVSSSGIKL – VSSSGI –25.5 0.572 + –

148 157 SSSGIKLANAb – SSSGIKb –24.7 0.721 + +

151 160 GIKLANATKK – KLANAT –23.4 0.672 + –

154 163 LANATKKVGTb – ANATKKb –24.9 0.735 + +

157 166 ATKKVGTKPA – ATKKVG –23 (2006) 0.872 + –

–21.4 (2010)

160 169 KVGTKPAESD – – –

163 172 TKPAESDKKE – – –

166 175 AESDKKEEEK – – –

169 178 DKKEEEKSAE – – –

172 181 EEEKSAETKE – – –

175 184 KSAETKEPTK – – –

178 187 ETKEPTKEPT – – –

181 190 EPTKEPTKVE – – –

184 193 KEPTKVEEPV – – –

187 196 TKVEEPVKKE – – –

190 199 EEPVKKEEKP – – –

193 202 VKKEEKPVQT – – –

196 205 EEKPVQTEEK – – –

199 208 PVQTEEKTEE – – –

202 211 TEEKTEEKSE – – –

205 214 KTEEKSELPK – – –

208 217 EKSELPKVED – – –

211 220 ELPKVEDLKI – – –
aThe 3D profile method predicted the hexapeptide GNYKNF, which is almost fully included in the tested decapeptide. bThese peptides were optionally removed in set ‘–5’. SC, shape complementarity.
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examples. Although 3D profile and the other methods in this 
benchmark were not subjected to cross-validation, we addition-
ally scrutinized Waltz using rigorous cross-validation criteria as 
outlined in Supplementary Notes 3 and 4 of our original paper. 
We emphasize that the 3D profile method1 in this ROC curve 
was the version from 2006; we did not test the performance of 
the improved 3D profile3 method.

Our and others’ recent work has additionally contributed sev-
eral new experimentally verified examples, which should form 
the basis of an enlarged benchmark set to allow standardized 
ROC comparison of amyloid predictors by all interested groups 
in the future.
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table 2 | Performance summary statistics for Waltz and 3D profile
set method (version) tP nP FP nn tn Fn sensitivity specificity accuracy Precision mCC Pe
All Waltz 9 12 2 31 29 3 0.750 0.935 0.884 0.818 0.705 0.685

All 3D profile (2006) 8 12 10 31 21 4 0.667 0.677 0.674 0.444 0.313 0.344

All 3D profile (2010) 8 12 5 31 26 4 0.667 0.839 0.791 0.615 0.494 0.505

–5 Waltz 9 12 0 26 26 3 0.750 1.000 0.921 1.000 0.820 0.750

–5 3D profile (2006) 8 12 5 26 21 4 0.667 0.808 0.763 0.615 0.465 0.474

–5 3D profile (2010) 8 12 0 26 26 4 0.667 1.000 0.895 1.000 0.760 0.667
TP, number of true positives; NP, number of positives; FP, number of false positives; NN, number of negatives; TN, number of true negatives; FN, number of false negatives; sensitivity, TP/NP; 
specificity, TN/NN; accuracy, (TP+TN)/(NP+NN); precision, TP/(TP + FP); MCC, Matthew correlation coefficient = ((TP × TN) – (FP × FN))/√((TP + FP)(TP + FN)(TN + FP)(TN + FN)); PE, probability 
excess = sensitivity + specificity – 1.
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