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Braun et al. reply: We applaud the thorough and revealing study 
by Chen et al.1 in this issue of Nature Methods. The work expands 
our previous findings in thoroughly characterizing different yeast 
two-hybrid (Y2H) implementations, with respect to overall assay 
sensitivity, by testing each implementation against a panel of ref-
erence protein-protein interactions2. The standardized reference 
sets3 make the data easily comparable to our previous analyses and 
clearly demonstrate that different Y2H assays detect different sub-
sets of interacting pairs of proteins2,3. Given the proven utility of 
using several assay configurations, the next question is where and 
how to deploy them. The high-throughput capabilities of Y2H4,5 
make it an ideal primary screening assay. Having multiple versions 
of Y2H that detect different subsets of interactions will be of a great 
value to generate more comprehensive data sets, which would then 
need to be validated using a scheme such as the “confidence scor-
ing” scheme that we proposed2. A key concept of our confidence 
scoring method is that any interaction detected by a given screening 
assay is subsequently confirmed by multiple orthogonal validation 
assays. The screening and validation assays must be as independent 
from each other as possible to eliminate the danger of systematic 
assay-dependent artifacts, which could make protein pairs appear 
as robustly interacting when they may not be. Use of a single type 
of assay for both screening and validation, even if implemented in 
different configurations, may introduce such systematic biases. It 
is therefore critical to obtain orthogonal validation ideally of all 
interacting pairs identified in an initial screen.
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Rapidly denoising pyrosequencing 
amplicon reads by exploiting 
rank-abundance distributions

To the Editor: Pyrosequencing has revolutionized microbial com-
munity analysis by allowing the simultaneous assessment of hun-
dreds of microbial communities in multiplex with sufficient depth 
to resolve meaningful biological patterns. These techniques have 
been used to study microbial processes on scales ranging from 
continents1 to within an individual’s body2.

Although powerful new analysis tools such as ‘visualization and 
analysis of microbal population structures’ (VAMPS), Mothur and 
‘quantitative insights into microbial ecology’ (QIIME)3 greatly 
streamline the process of interpreting microbial community infor-
mation—for example, by clustering of reads, taxonomy assignments 
and visualizations—substantial questions remain about the suitability 
of pyrosequencing for addressing questions concerning alpha diver-
sity, the amount of diversity in each individual community and non-
phylogenetic beta-diversity measures. In particular, noise introduced 
during pyrosequencing and PCR amplification can inflate estimates 
of the number of operational taxonomic units (OTUs) (chosen at the 
97% identity level) in a given habitat by orders of magnitude4. The 
current state of the art is to reduce noise by clustering the flowgrams 
(patterns of intensities in each read) before conversion to sequenc-
es to eliminate issues owing to homopolymer read errors5, yet this 
approach is exceedingly computationally expensive and beyond the 
reach of most individual investigators.

Inability to accurately determine which sequences are present 
in a sample, and hence the abundance of rare taxa, greatly inhib-
its our ability to infer important ecological parameters such as 
comprehensive rank-abundance curves. Yet the rank-abundance 
curve of the common taxa can reduce the computational expense 
of denoising. Empirical rank-abundance curves of actual microbial 
communities tend to be dominated by a relatively small number 
of abundant taxa. Consequently, performing all-on-all compari-
sons for clustering is exceedingly inefficient; instead, a subset of 
reads suffices to identify the common OTUs, which can then be 
iteratively removed by recruitment to an existing cluster. First, we 
devised a fast pre-filter, removing reads that are strict prefixes of 
other reads, and computed an initial sequence distribution. We 
then sorted the prefix clusters in descending order of abundance 
and used this initial distribution to cluster similar reads, compar-
ing each additional unclustered read to the most abundant clusters 
because we expected the abundant clusters to yield a larger number 
of erroneous near-matching reads owing to their numerical domi-
nance alone. Then we clustered only the leftover reads representing 
more divergent sequences (Supplementary Methods).

This approach retains the advantage that clusters with only one 
member are not discarded entirely, allowing exploration of the rare 
biosphere6. We could analyze a small dataset of 40,000 sequences 
in less than an hour on a single laptop computer and a full Roche 
454 sequencer run with 500,000 sequences on a midsize computer 
cluster in one day (Supplementary Table 1). We can thus address 
questions in community ecology that were previously intractable.

Applying these new methods to human-associated body habi-
tats2 and several test communities (Supplementary Table 2), we 
found that denoising produced a substantial decrease in the diver-
sity at the OTU level and in phylogenetic alpha diversity. However, 
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