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POINTS OF SIGNIFICANCE

Tabular data
Tabulating the number of objects in categories 
of interest dates back to the earliest records of 
commerce and population censuses.

So far in this column, we have discussed mainly the statistical analy-
sis of continuous variables. We now turn to categorical data, which 
appear in experimental designs that enumerate how samples are 
distributed among different categories. There are two types of cat-
egorization: ordinal, for which there is an implied order (healthy, 
asymptomatic, symptomatic) and nominal, for which there is no 
order (gender or blood type). This month, we discuss nominal data.

Categorical data are typically counts (or percentages) of samples 
in a category and can be tabulated to help assess and compare pro-
portions. One-way tables assess whether counts in a category match 
a predetermined distribution, provided either by theory or by his-
torical trends. Multiway tables show more than one categorical vari-
able and assess whether there is an association between counts when 
cross-classified by both variables. In both kinds of tables, statistical 
testing is performed comparing the counts (not the percentages) to 
the number expected under a null hypothesis.

Analyzing one-way tables addresses what is called the ‘goodness of 
fit’ problem, because it is a way to assess how well the hypothesized 
distribution fits the observed counts. Mendelian genetics provides a 
classic example. Assume two alleles A and a with frequencies p and 
1 – p, respectively. Under random mating and survival, we expect 
offspring genotypes AA, Aa and aa with probabilities p2, 2p(1 – p) 
and (1 – p)2, respectively. In Table 1 we simulate this for 100 ran-
domly selected individuals, together with expected counts based on 
p = 0.25 and the differences between observed and expected counts. 
The expected counts do not need to be whole numbers, and the sum 
of differences always adds up to zero, which imposes a constraint. 
How do these frequencies match our expectation, and what kind of 
inferences can we make?

In the goodness-of-fit approach, we ask whether differences as 
large as those observed could be due to random variation between 
samples, or whether they provide evidence against the null hypoth-
esis of random mating and survival. For randomly sampled count 
data, statistical theory shows that the population variance in counts 
is equal to the expected value. When the counts are sufficiently large 
(the usual rule of thumb is that the expected number of counts in 
each category is greater than 5), they are approximately normally 
distributed. In this case, we can use a z test to determine whether 
the difference between the observed (O) and expected (E) counts 
is larger than predicted compared to the s.d., using z = (O – E)/

. For example, for AA the z score of the difference is 3.75/ 6.25 = 
1.5, yielding P = 0.13. However, for aa the same computation yields 
–16.25/ 56.25 = 1.5 and P = 0.03.

To avoid multiple testing and account for the constraint that the 
differences must sum to zero, we test all the differences simultane-
ously by summing the squared z scores using the chi-squared good-
ness-of-fit test1, χ2 = Σ(O – E)2/E. Under the null hypothesis, the χ2 
test statistic will be distributed according to the χ2 distribution on 
k – 1 degrees of freedom (d.f.), where k is the number of categories. 

Using differences as shown in Table 1, we obtain χ2 = 11.11 (d.f. = 
2) and P = 0.0039, suggesting that the observed counts are highly 
unlikely to arise from random mating and survival with p = 0.25.

Typically, the distribution of counts is characterized by one or 
more parameters. For our case, this is the value of p. In Table 1, we 
used p = 0.25, which we might have based on previous evidence; but 
usually we don’t know what these parameter values are and must 
estimate them from the samples. In doing so, the degrees of freedom 
of the test are reduced by the number of parameters estimated. For 
our observed counts in Table 1, we can estimate the proportion of A 
in the sample as p = (2 × 10 + 1 × 50)/200 = 0.35, where 200 is twice 
the sample size because the population is diploid. Using this estimate 
of p changes the expected and difference cells in our table (Table 2).

Using the expected and difference counts based on p = 0.35 gives 
χ2 = 0.98. Since we estimated one parameter, one degree of freedom 
is lost; we use the χ2 distribution on d.f. = 1 and find P = 0.32. Now 
we fail to reject the hypothesis that the allele distribution is due to 
random mating and survival, in contrast to our rejection of the null 
hypothesis when using p = 0.25. Hence we can conclude that our 
rejection of the null hypothesis in the previous test was due to the 
proposed value for the parameter, rather than to an unusual dis-
tribution of genotypes given the observed proportion of A alleles.

If we have two or more categorical variables, we use multiway 
tables such as Table 3, which now also includes the incidence of 
hypertension (H). The hypothesis most usually tested using cross-
tabulated data is whether there is an association between the two 
categorical variables. For example, we can see that although 14% 
of the individuals have hypertension overall, individuals with AA 
have a 70% incidence of hypertension, but those with aa have only 
a 5% incidence. How likely is this to arise by chance under the null 
hypothesis that there is no association between genotype and hyper-
tension?

The two most common tests of association are Fisher’s exact test2 
and the χ2 test of independence3; both compute the probability of 
observing a table that is as extreme as or more extreme than the 
one observed when there is no association between variables and 
the row and column totals are fixed. For example, a table with more 
extreme observations would be one with all the same entries in the 
Aa and aa columns as in Table 3 but with values of 2 and 8 in the AA 

Table 1 | Distribution of two alleles, A and a, among 100 
individuals

Genotype
AA Aa aa

Observed 10 50 40

Expected 6.25 37.5 56.25

Difference 3.75 12.5 –16.25
The expected values are based on the known fraction of A in the population, p = 0.25.

Table 2 | Distribution of two alleles, A and a, among 100 individuals 
shown in Table 1

Genotype
AA Aa aa

Observed 10 50 40

Expected 12.25 45.5 42.25

Difference –2.25 4.5 2.25
Here the expected values are based on the fraction of A in the population estimated from the sample, 
p = 0.35.



330 | VOL.14 NO.4 | APRIL 2017 | NATURE METHODS

THIS MONTH

and B are independent is equivalent to a test that x = 1 or log(x) 
= 0. This is similar to the testing for the presence of an effect in 
ANOVA or additive models. Another way of testing the indepen-
dence hypothesis that is particularly useful for three- and higher-
way tables is to test whether the log(counts) can be accounted for 
by an additive model (independence) or whether non-additive 
(interaction) terms are needed4.

What is often not appreciated in assessing hypotheses using 
the  χ2 test is that, although the  χ2 distribution is continuous, 
for any set of row and column count totals, only a finite set of P 
values is possible. In addition, because there is a table that is the 
least extreme and that can occur with finite probability, P = 1 is an 
exact and valid value. Because of this, in multiple testing problems 
such as genome-wide association studies in which the association 
between a trait and multiple genotypes is assessed, the histogram 
of P values tends to have peaks at many values, including at P = 1. 
This phenomenon does not occur for continuous measurement 
data. However, simulation studies have shown5 that methods 
for adjusting P values to control the false discovery rate (FDR) 
are conservative for tabular data (and therefore have at most the 
desired FDR).

Historically, tabular data were generated when samples were 
classified into categories defined by a small number of nominal 
variables. In high-throughput analysis, tabular data arise from 
counting reads (classified by gene), assigning samples to genotypes 
(often at many loci) or other types of markers. The availability of 
software for computing Fisher’s exact test and log-linear models 
with high-throughput data have made it feasible to test for depen-
dence between these types of data and a categorical phenotype 
such as disease status. The  χ2 goodness-of-fit test may also be used 
to determine whether the counts follow distributions suggested by 
prior knowledge about the biological system.
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column for H = No and H = Yes, respectively. Given the table totals 
and under the null hypothesis, these observations are more extreme, 
since we expect only 1.4 individuals (14% of 10) with this genotype 
to have hypertension.

Fisher’s exact test is based on the hypergeometric distribution. It 
computes the probability of allocating each of the 86 normotensive 
individuals and each of the 14 hypertensive individuals at random 
among the 3 genotypes or, equivalently, allocating the 10 AA indi-
viduals, 50 Aa individuals and 40 aa individuals at random to the 
hypertensive and normotensive groups. For Table 3, Fisher’s exact 
test gives P = 2.6 × 10-5, and we can conclude that it is highly unlike-
ly that a table this extreme or more extreme would be observed if 
there is no association between hypertension and genotype.

The χ2 test uses the fact that when two events are independent, 
the probability of both occurring is the product of the probabilities 
of each, for example, P(AA∩H) = P(AA)P(H). For example, since 
P(AA) = 10% and P(H) = 14%, then P(AA∩H) = 1.4%. Thus, among 
100 individuals we expect a count of 1.4 for AA and H. The test 
applies this substitution to all the cells in the table: replacing the 
counts with their expected values calculated by assuming indepen-
dence, calculating probabilities for each cell and multiplying them 
by the total sample size (Table 3, values in parentheses). The χ2 sta-
tistic is then computed as for the goodness-of-fit test, and for Table 
3 we find χ2 = 29.4 and P = 4.1 × 10-7. The degrees of freedom for 
this test is d.f. = (r – 1)(c – 1) = 2, for a table with r = 2 rows and c = 
3 columns. This value reflects that, for given totals, we need (r – 1)
(c – 1) expected counts in different rows and columns to determine 
all of the rc expected counts.

The χ2 test is commonly used because Fisher’s exact test requires 
substantially more computation. While Fisher’s exact test provides 
an exact evaluation of the P value, when the smallest expected count 
is 5 or greater, the χ2 statistic is an adequate approximation to the P 
value. The accuracy of the approximation is better for larger expect-
ed values and less extreme P values.

In Table 3, because the smallest expected count is only 1.4 and the 
P value is very small, the two P values differ substantially. If instead 
we observed the counts shown in Table 4, with a smallest expected 
count of 5, the P value from Fisher’s exact test is P = 0.0031 while the 
P value from the  χ2 test is P = 0.0036. For less extreme P values, the 
approximate value from the  χ2 test is even closer to the exact value 
from Fisher’s exact test.

The χ2 test uses the fact that if events A and B are indepen-
dent, P(AB) = P(A)P(B) or, alternatively, log(P(AB)) = log(P(A)) 
+ log(P(B)). Letting x = P(AB)/(P(A)P(B)), we have log(P(AB) = 
log(P(A)) + log(P(B)) + log(x). Thus the null hypothesis that A 

Table 3 | A multiway table reports two or more categorical variables

Hypertension
Genotype

Total hypertensionAA Aa aa
No 3 (8.6) 45 (43) 38 (34.4) 86

Yes 7 (1.4) 5 (7) 2 (5.6) 14

Total 10 50 40 100
Here, the counts of each genotype is broken down by the incidence of hypertension within each 
category. Values in parentheses represent expected values based on column and row totals and are 
used in the χ2 test of independence.

Table 4 | A scenario with larger expected counts than in Table 3.

Hypertension
Genotype

Total hypertensionAA Aa aa
No 3 (5) 27 (25) 8 (20) 50

Yes 7 (5) 23 (25) 30 (20) 50

Total 10 50 40 100
When the smallest expected count is larger than 5, the P values estimated from the χ2 and Fisher’s 
tests are similar. Expected values are shown in parentheses.
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The published version of this article contains a mathematical error. In the discussion of z tests in the fourth paragraph, the same z score  
is incorrectly given for both AA and aa; the last two sentences of the paragraph should read as follows: “For example, for AA the  
z score of the difference is 3.75/√6.25 = 1.5, yielding P = 0.13. However, for aa the same computation yields –16.25/√56.25 = –2.167  
and P = 0.03.”
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