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EDITORIAL

Research is by nature collaborative. Whether working in 
individual labs on specific problems or in larger groups 
analyzing ‘omics’ data sets, most researchers seek to 
synthesize and compare their output with that of other 
related work. And yet such comparisons are often rela-
tively qualitative and anecdotal. Meta-analysis, a statisti-
cal approach that combines independent studies testing 
the same hypothesis and that can determine whether a 
result holds across that larger sample, is not widespread 
across basic research.

In the clinical world, meta-analysis is common. 
Such analysis may combine studies on whether a drug 
affects a particular condition, for example, or studies 
investigating the influence of dietary habits on health. 
Organizations like Cochrane and the Medical Letter 
are dedicated to conducting meta-analyses or critical, 
unbiased reviews of medical evidence to help doctors, 
patients and others make informed decisions about 
health guidelines and care.

This prevalence in clinical research is in many ways 
not surprising: clinical studies typically have a few, 
relatively simple endpoints or measures and, unlike 
exploratory basic research, are more likely to adhere to 
a standard study design. As such they are much more 
conducive to meta-analytic synthesis. 

To be sure, there are areas in basic biology where 
meta-analysis is far from a foreign concept. Genome-
wide association studies (GWAS) determine statistical 
correlations between genomic markers and traits or dis-
eases; combining data from many studies increases the 
power to detect weak effects and permits the robustness 
of associations to be assessed across multiple cohorts. 
Meta-GWA studies, for instance, have identified many 
more markers for Crohn’s disease than individual stud-
ies have. Researchers in metagenomics are also making 
increasing use of the approach, either to compare samples 
across studies or to test the robustness of a single set of 
conclusions. These examples illustrate a feature of meta-
analysis: it is valuable when additional statistical power 
is needed to overcome small effect sizes or sample sizes. 

In most basic research, scientists may well be able to 
collect enough data within their own labs to detect the 
effect they are studying, reducing the need for this type 
of synthetic, cross-study effort.  But in the face of con-
tradictory conclusions or when results cannot be repro-
duced, neither of which is a rare scenario, meta-analysis 
could help resolve the conflict, identify and correct for 

confounders, or point to the fact that the biology is more 
complex than initially thought. 

Meta-analysis of mouse behavioral phenotyping, for 
instance, has been proposed as the basis for modeling 
genotype–laboratory interactions and for setting thresh-
olds to identify phenotypes that should be more readily 
replicated across laboratories. In separate work, meta-
analysis of studies spanning more than a decade was 
used to resolve contradictory reports on brain regions 
involved in short term memory in the fruitfly. Similarly, 
in metagenomics, meta-analysis of the composition of 
the human fecal microbiome in lean and obese people 
found no evidence for an ‘obesity- associated’ microbi-
ome, as had been reported in some (but not all) previ-
ous studies; instead it found that interstudy variability 
was larger than the difference between lean and obese 
hosts. In yet another example, an analysis of the electro-
physiological properties of neurons measured in multiple 
studies identified experimental factors (animal age and 
electrode type, among others) as a source of variability; 
correcting for these rendered the data more reproducible 
across labs.

Reproducibility also stands only to gain from the 
increased attention to transparent reporting of meth-
ods and experimental metadata that is needed for this 
approach. Effective meta-analysis requires that data 
be accessible in a suitable format, well annotated, and 
comparable in a way that is biologically meaningful. To 
determine whether the last criterion is met, researchers 
must be able to assess the details of the underlying experi-
ments: the studies to be combined must use methods that 
are measuring comparable parameters; the samples and 
how they were processed should be compatible, given the 
biological question being asked. Any filtering or bioinfor-
matic data processing must be assessed for its potential to 
bias the results, in which case appropriate normalization 
is needed. And finally, any criteria or bias in data selec-
tion must be stated. 

Although the notion of combining similar experiments 
may seem simple, meta-analysis is far from trivial; to do it 
properly one needs both the statistical and the biological 
chops. It does not fit as naturally with all basic research 
as it does with the clinical. But it would be no mistake 
to more frequently consider this approach to help make 
better sense of the vast body of complex and sometimes 
contradictory evidence supporting our understanding of 
biological systems.

Meta-analysis in basic biology
Meta-analysis is common in clinical research, less so in basic biology, but it is also proving 
useful in some basic research contexts. It should help improve research reproducibility.
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