Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics

Abstract

Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis, but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography–tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we developed TRIC (http://proteomics.ethz.ch/tric/), a software tool that utilizes fragment-ion data to perform cross-run alignment, consistent peak-picking and quantification for high-throughput targeted proteomics. TRIC reduced the identification error compared to a state-of-the-art SWATH-MS analysis without alignment by more than threefold at constant recall while correcting for highly nonlinear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups. Thus, TRIC fills a gap in the pipeline for automated analysis of massively parallel targeted proteomics data sets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRIC: alignment algorithm for targeted proteomics data.
Figure 2: Identification and alignment accuracy of TRIC on a validation data set of more than 7,000 manually annotated peak groups.
Figure 3: Analysis of a data set of 12 runs of S. pyogenes exposed to human plasma using TRIC.
Figure 4: Pulsed-SILAC experiment on human iPSCs.
Figure 5: Protein turnover rates in human iPSCs.

Similar content being viewed by others

References

  1. Hudson, T.J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  Google Scholar 

  2. McLendon, R. et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Article  CAS  Google Scholar 

  3. Alexandrov, L.B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  Google Scholar 

  4. Haines, J.L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

    Article  CAS  Google Scholar 

  5. International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

  6. Röst, H.L., Malmström, L. & Aebersold, R. Reproducible quantitative proteotype data matrices for systems biology. Mol. Biol. Cell 26, 3926–3931 (2015).

    Article  Google Scholar 

  7. de Godoy, L.M.F. et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254 (2008).

    Article  CAS  Google Scholar 

  8. Hebert, A.S. et al. The one hour yeast proteome. Mol. Cell. Proteomics 13, 339–347 (2014).

    Article  CAS  Google Scholar 

  9. Beck, M. et al. The quantitative proteome of a human cell line. Mol. Syst. Biol. 7, 549 (2011).

    Article  Google Scholar 

  10. Nagaraj, N. et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7, 548 (2011).

    Article  Google Scholar 

  11. Desiere, F. et al. The PeptideAtlas project. Nucleic Acids Res. 34, D655–D658 (2006).

    Article  CAS  Google Scholar 

  12. Omenn, G.S. et al. Metrics for the Human Proteome Project 2015: progress on the human proteome and guidelines for high-confidence protein identification. J. Proteome Res. 14, 3452–3460 (2015).

    Article  CAS  Google Scholar 

  13. Picotti, P. et al. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494, 266–270 (2013).

    Article  CAS  Google Scholar 

  14. Li, X.J. et al. A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci. Transl. Med. 5, 207ra142 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Drabovich, A.P. et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci. Transl. Med. 5, 212ra160 (2013).

    Article  Google Scholar 

  16. Surinova, S. et al. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol. Med. 7, 1166–1178 (2015).

    Article  CAS  Google Scholar 

  17. Surinova, S. et al. Non-invasive prognostic protein biomarker signatures associated with colorectal cancer. EMBO Mol. Med. 7, 1153–1165 (2015).

    Article  CAS  Google Scholar 

  18. Gillet, L.C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 11, O111.016717 (2012).

    Article  Google Scholar 

  19. Röst, H.L. et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 32, 219–223 (2014).

    Article  Google Scholar 

  20. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  Google Scholar 

  21. Martin, D.B. et al. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments. Mol. Cell. Proteomics 7, 2270–2278 (2008).

    Article  CAS  Google Scholar 

  22. Mead, J.A. et al. MRMaid, the web-based tool for designing multiple reaction monitoring (MRM) transitions. Mol. Cell. Proteomics 8, 696–705 (2009).

    Article  CAS  Google Scholar 

  23. Prakash, A. et al. Expediting the development of targeted SRM assays: using data from shotgun proteomics to automate method development. J. Proteome Res. 8, 2733–2739 (2009).

    Article  CAS  Google Scholar 

  24. Walsh, G.M. et al. Implementation of a data repository-driven approach for targeted proteomics experiments by multiple reaction monitoring. J. Proteomics 72, 838–852 (2009).

    Article  CAS  Google Scholar 

  25. Sherwood, C.A. et al. MaRiMba: a software application for spectral library-based MRM transition list assembly. J. Proteome Res. 8, 4396–4405 (2009).

    Article  CAS  Google Scholar 

  26. Bertsch, A. et al. Optimal de novo design of MRM experiments for rapid assay development in targeted proteomics. J. Proteome Res. 9, 2696–2704 (2010).

    Article  CAS  Google Scholar 

  27. Reiter, L. et al. mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat. Methods 8, 430–435 (2011).

    Article  CAS  Google Scholar 

  28. Teleman, J. et al. Automated selected reaction monitoring software for accurate label-free protein quantification. J. Proteome Res. 11, 3766–3773 (2012).

    Article  CAS  Google Scholar 

  29. Prakash, A. et al. Signal maps for mass spectrometry-based comparative proteomics. Mol. Cell. Proteomics 5, 423–432 (2006).

    Article  CAS  Google Scholar 

  30. Mueller, L.N. et al. SuperHirn—a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 7, 3470–3480 (2007).

    Article  CAS  Google Scholar 

  31. Elias, J.E. & Gygi, S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  Google Scholar 

  32. Reiter, L. et al. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol. Cell. Proteomics 8, 2405–2417 (2009).

    Article  CAS  Google Scholar 

  33. Doherty, M.K., Hammond, D.E., Clague, M.J., Gaskell, S.J. & Beynon, R.J. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J. Proteome Res. 8, 104–112 (2009).

    Article  CAS  Google Scholar 

  34. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  Google Scholar 

  35. Reinstein, E. & Ciechanover, A. Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann. Intern. Med. 145, 676–684 (2006).

    Article  Google Scholar 

  36. Pratt, J.M. et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics 1, 579–591 (2002).

    Article  CAS  Google Scholar 

  37. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    Article  Google Scholar 

  38. Teleman, J. et al. DIANA—algorithmic improvements for analysis of data-independent acquisition MS data. Bioinformatics 31, 555–562 (2015).

    Article  CAS  Google Scholar 

  39. Prince, J.T. & Marcotte, E.M. Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Anal. Chem. 78, 6140–6152 (2006).

    Article  CAS  Google Scholar 

  40. Kohlbacher, O. et al. TOPP–the OpenMS proteomics pipeline. Bioinformatics 23, e191–e197 (2007).

    Article  CAS  Google Scholar 

  41. Sturm, M. et al. OpenMS—an open-source software framework for mass spectrometry. BMC Bioinformatics 9, 163 (2008).

    Article  Google Scholar 

  42. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  43. Liu, Y. et al. Quantitative variability of 342 plasma proteins in a human twin population. Mol. Syst. Biol. 11, 786 (2015).

    Article  Google Scholar 

  44. Tsou, C.-C. et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 12, 258–264 (2015).

    Article  CAS  Google Scholar 

  45. Adamo, A. et al. 7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. Nat. Genet. 47, 132–141 (2015).

    Article  CAS  Google Scholar 

  46. Kim, S.C. et al. A clean, more efficient method for in-solution digestion of protein mixtures without detergent or urea. J. Proteome Res. 5, 3446–3452 (2006).

    Article  CAS  Google Scholar 

  47. Escher, C. et al. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12, 1111–1121 (2012).

    Article  CAS  Google Scholar 

  48. Liu, Y. et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol. Cell. Proteomics 13, 1753–1768 (2014).

    Article  CAS  Google Scholar 

  49. Collins, B.C. et al. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat. Methods 10, 1246–1253 (2013).

    Article  CAS  Google Scholar 

  50. Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008).

    Article  CAS  Google Scholar 

  51. Craig, R. & Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    Article  CAS  Google Scholar 

  52. Geer, L.Y. et al. Open mass spectrometry search algorithm. J. Proteome Res. 3, 958–964 (2004).

    Article  CAS  Google Scholar 

  53. Kunszt, P. et al. iPortal: the swiss grid proteomics portal: requirements and new features based on experience and usability considerations. Concurr. Comput. 27, 433–445 (2015).

    Article  Google Scholar 

  54. Keller, A., Eng, J., Zhang, N., Li, X.J. & Aebersold, R. A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 1, 2005.0017 (2005).

    Article  Google Scholar 

  55. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  Google Scholar 

  56. Shteynberg, D. et al. iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell. Proteomics 10, M111.007690 (2011).

    Article  Google Scholar 

  57. Schubert, O.T. et al. Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat. Protoc. 10, 426–441 (2015).

    Article  CAS  Google Scholar 

  58. Lam, H. et al. Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7, 655–667 (2007).

    Article  CAS  Google Scholar 

  59. Röst, H.L., Aebersold, R. & Schubert, O. Automated SWATH data analysis using targeted extraction of ion chromatograms. Preprint at. bioRxiv http://dx.doi.org/10.1101/044552 (2016).

Download references

Acknowledgements

We would like to thank the SyBIT project of SystemsX.ch for support and maintenance of the lab-internal computing infrastructure. L. Blum (SyBIT) contributed substantially to making this software available to the lab and provided critical feedback. This work was supported by ETH Zurich (grant ETH-30 11-2 to H.R. and R.A.), the Swiss National Science Foundation (SNSF grants P2EZP3_162268 to H.R. and 31003A_166435 to R.A.), ERC Proteomics v3.0 (AdvG grant 233226 to R.A.), ERC Proteomics4D (AdvG grant 670821 to R.A.), the PhosphonetX project of SystemsX.ch, the ERC DISEASEAVATARS (grant 616441 to R.A. and G.T.), the Telethon Foundation (GGP14265 to G.T.), the Regione Lombardia (Grant Ricerca Indipendente 2012 to G.T.) and the Fondazione Umberto Veronesi (G.D.).

Author information

Authors and Affiliations

Authors

Contributions

H.L.R. designed and wrote code, performed data analysis and produced the figures. Y.L., G.D. and M.Z. performed iPSC experiments and acquired MS data. P.N. and G.R. contributed to code and provided an initial prototype of the implementation. B.C.C. and L.G. acquired MS data and gave critical input. G.T., L.M. and R.A. designed and supervised the study. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Ruedi Aebersold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Notes 1–7 (PDF 2736 kb)

Supplementary Software

msproteomicstools 0.4.3 (ZIP 999 kb)

Supplementary Table 1

Result table describing the manually picked peptides with retention times and peak boundaries. (CSV 5750 kb)

Supplementary Table 2

Significant proteins from the S. pyogenes analysis without any alignment. (CSV 137 kb)

Supplementary Table 3

Significant proteins from the S. pyogenes analysis with TRIC alignment. (CSV 162 kb)

Supplementary Table 4

Degradation rates for the iPSC as determined by SWATH-MS analysis on the peptide level. (CSV 556 kb)

Supplementary Table 5

Degradation rates for the iPSCs as determined by SWATH-MS analysis on the protein level. (CSV 87 kb)

Supplementary Table 6

GO-enrichment analysis using Gorilla. (XLS 32 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röst, H., Liu, Y., D'Agostino, G. et al. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nat Methods 13, 777–783 (2016). https://doi.org/10.1038/nmeth.3954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3954

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research