Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein

A Corrigendum to this article was published on 29 September 2016

This article has been updated

Abstract

Far-red fluorescent proteins (FPs) are desirable for in vivo imaging because with these molecules less light is scattered, absorbed, or re-emitted by endogenous biomolecules compared with cyan, green, yellow, and orange FPs. We developed a new class of FP from an allophycocyanin α-subunit (APCα). Native APC requires a lyase to incorporate phycocyanobilin. The evolved FP, which we named small ultra-red FP (smURFP), covalently attaches a biliverdin (BV) chromophore without a lyase, and has 642/670-nm excitation–emission peaks, a large extinction coefficient (180,000 M−1cm−1) and quantum yield (18%), and photostability comparable to that of eGFP. smURFP has significantly greater BV incorporation rate and protein stability than the bacteriophytochrome (BPH) FPs. Moreover, BV supply is limited by membrane permeability, and smURFPs (but not BPH FPs) can incorporate a more membrane-permeant BV analog, making smURFP fluorescence comparable to that of FPs from jellyfish or coral. A far-red and near-infrared fluorescent cell cycle indicator was created with smURFP and a BPH FP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allophycocyanin, chromophore structures, and smURFP mutations.
Figure 2: smURFP + BV-purified protein, spectra, and comparison of APCα and BPH FPs expressed in E. coli and smURFP + BV expressed in vivo.
Figure 3: Increasing chromophore concentration within cells increases fluorescence.
Figure 4: smURFP expressed in vivo and smURFP fusions in mammalian cells.
Figure 5: Time-lapse microscopy of FR and NIR FUCCI expressed in HEK293A cells.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Referenced accessions

Protein Data Bank

Change history

  • 16 September 2016

    In the version of this article initially published, Roger Y. Tsien was listed as the corresponding author. On account of his sad demise shortly after publication, Erik A. Rodriguez has been added as corresponding author. This has been updated in the HTML and PDF versions of the article.

References

  1. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  Google Scholar 

  2. Tsien, R.Y. Constructing and exploiting the fluorescent protein paintbox (Nobel lecture). Angew. Chem. Int. Edn. Engl. 48, 5612–5626 (2009).

    Article  CAS  Google Scholar 

  3. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  4. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    Article  CAS  Google Scholar 

  5. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  6. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  7. Moore, M.M., Oteng-Pabi, S.K., Pandelieva, A.T., Mayo, S.L. & Chica, R.A. Recovery of red fluorescent protein chromophore maturation deficiency through rational design. PLoS ONE 7, e52463 (2012).

    Article  CAS  Google Scholar 

  8. Tubbs, J.L., Tainer, J.A. & Getzoff, E.D. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation. Biochemistry 44, 9833–9840 (2005).

    Article  CAS  Google Scholar 

  9. Veal, E.A., Day, A.M. & Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14 (2007).

    Article  CAS  Google Scholar 

  10. Hussain, S.P., Hofseth, L.J. & Harris, C.C. Radical causes of cancer. Nat. Rev. Cancer 3, 276–285 (2003).

    Article  CAS  Google Scholar 

  11. Weitzman, S.A. & Gordon, L.I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood 76, 655–663 (1990).

    CAS  PubMed  Google Scholar 

  12. Barnham, K.J., Masters, C.L. & Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205–214 (2004).

    Article  CAS  Google Scholar 

  13. Kumagai, A. et al. A bilirubin-inducible fluorescent protein from eel muscle. Cell 153, 1602–1611 (2013).

    Article  CAS  Google Scholar 

  14. König, K. Multiphoton microscopy in life sciences. J. Microsc. 200, 83–104 (2000).

    Article  Google Scholar 

  15. Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).

    Article  Google Scholar 

  16. Filonov, G.S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29, 757–761 (2011).

    Article  CAS  Google Scholar 

  17. Shcherbakova, D.M. & Verkhusha, V.V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).

    Article  CAS  Google Scholar 

  18. Yu, D. et al. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat. Commun. 5, 3626 (2014).

    Article  CAS  Google Scholar 

  19. Auldridge, M.E., Satyshur, K.A., Anstrom, D.M. & Forest, K.T. Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. J. Biol. Chem. 287, 7000–7009 (2012).

    Article  CAS  Google Scholar 

  20. Fischer, A.J. & Lagarias, J.C. Harnessing phytochrome's glowing potential. Proc. Natl. Acad. Sci. USA 101, 17334–17339 (2004).

    Article  CAS  Google Scholar 

  21. Yeh, S.W., Ong, L.J., Clark, J.H. & Glazer, A.N. Fluorescence properties of allophycocyanin and a crosslinked allophycocyanin trimer. Cytometry 8, 91–95 (1987).

    Article  CAS  Google Scholar 

  22. Tooley, A.J., Cai, Y.A. & Glazer, A.N. Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-α subunit in a heterologous host. Proc. Natl. Acad. Sci. USA 98, 10560–10565 (2001).

    Article  CAS  Google Scholar 

  23. Zhang, J. et al. Fused-gene approach to photoswitchable and fluorescent biliproteins. Angew. Chem. Int. Edn. Engl. 49, 5456–5458 (2010).

    Article  CAS  Google Scholar 

  24. Harris, J.W. & Kellermeyer, R.W. The Red Cell: Production, Metabolism, Destruction: Normal and Abnormal, Revised edn. (Harvard University Press, 1970).

  25. Wahleithner, J.A., Li, L.M. & Lagarias, J.C. Expression and assembly of spectrally active recombinant holophytochrome. Proc. Natl. Acad. Sci. USA 88, 10387–10391 (1991).

    Article  CAS  Google Scholar 

  26. Arciero, D.M., Bryant, D.A. & Glazer, A.N. In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J. Biol. Chem. 263, 18343–18349 (1988).

    CAS  PubMed  Google Scholar 

  27. Li, L., Murphy, J.T. & Lagarias, J.C. Continuous fluorescence assay of phytochrome assembly in vitro. Biochemistry 34, 7923–7930 (1995).

    Article  CAS  Google Scholar 

  28. Katayama, H., Yamamoto, A., Mizushima, N., Yoshimori, T. & Miyawaki, A. GFP-like proteins stably accumulate in lysosomes. Cell Struct. Funct. 33, 1–12 (2008).

    Article  CAS  Google Scholar 

  29. Chu, J. et al. Noninvasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat. Methods 11, 572–578 (2014).

    Article  CAS  Google Scholar 

  30. Stack, J.H., Whitney, M., Rodems, S.M. & Pollok, B.A. A ubiquitin-based tagging system for controlled modulation of protein stability. Nat. Biotechnol. 18, 1298–1302 (2000).

    Article  CAS  Google Scholar 

  31. Sakaue-Sawano, A., Kobayashi, T., Ohtawa, K. & Miyawaki, A. Drug-induced cell cycle modulation leading to cell-cycle arrest, nuclear mis-segregation, or endoreplication. BMC Cell Biol. 12, 2 (2011).

    Article  CAS  Google Scholar 

  32. Tomura, M. et al. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system. PLoS ONE 8, e73801 (2013).

    Article  CAS  Google Scholar 

  33. Toettcher, J.E., Gong, D., Lim, W.A. & Weiner, O.D. Light control of plasma membrane recruitment using the Phy-PIF system. Methods Enzymol. 497, 409–423 (2011).

    Article  CAS  Google Scholar 

  34. Gambetta, G.A. & Lagarias, J.C. Genetic engineering of phytochrome biosynthesis in bacteria. Proc. Natl. Acad. Sci. USA 98, 10566–10571 (2001).

    Article  CAS  Google Scholar 

  35. Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).

    Article  Google Scholar 

  36. Filonov, G.S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29, 757–761 (2011).

    Article  CAS  Google Scholar 

  37. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  38. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  Google Scholar 

  39. Liu, J.Y., Jiang, T., Zhang, J.P. & Liang, D.C. Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolution. J. Biol. Chem. 274, 16945–16952 (1999).

    Article  CAS  Google Scholar 

  40. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005).

    Article  CAS  Google Scholar 

  41. Andrusier, N., Nussinov, R. & Wolfson, H.J. FireDock: fast interaction refinement in molecular docking. Proteins 69, 139–159 (2007).

    Article  CAS  Google Scholar 

  42. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  43. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  44. Wahleithner, J.A., Li, L.M. & Lagarias, J.C. Expression and assembly of spectrally active recombinant holophytochrome. Proc. Natl. Acad. Sci. USA 88, 10387–10391 (1991).

    Article  CAS  Google Scholar 

  45. Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D. & Tsien, R.Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  Google Scholar 

  46. Yu, D. et al. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat. Commun. 5, 3626 (2014).

    Article  CAS  Google Scholar 

  47. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

National Institute of General Medical Sciences Postdoctoral Fellowship F32GM089114 supported the project (E.A.R.). US National Institutes of Health grants GM086197 (R.Y.T.), NS027177 (R.Y.T.), NS090590 (J.Y.L.), and the Howard Hughes Medical Institute (R.Y.T.) supported the project. We thank P. Steinbach for measuring photostability, Q. Xiong for FACS, S. Adams for advice and experimental expertise, and P. Arcaira for help with mouse experiments. We thank M. Lin (Departments of Pediatrics and Bioengineering, Stanford, Stanford, CA) for iRFP713 vectors, M. Davidson (Addgene) for fusion vectors, and A. Miyawaki (Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, Wako, Japan) for FUCCI vectors. This paper is dedicated to the memory of Roger Tsien, who passed away shortly after it was published.

Author information

Authors and Affiliations

Authors

Contributions

E.A.R. and G.N.T. created bacterial expression plasmids, evolved and developed smURFP and APCαFPs in E. coli, and characterized properties. E.A.R. prepared mammalian plasmids, made the smURFP homology model, created TDsmURFP, performed BV incorporation rates, performed mammalian cell experiments (HO-1, different chromophores, protein stability, and FP photobleaching), created FR and NIR FUCCI, and performed fluorescence imaging in vitro and in vivo. J.Y.L. transduced neurons. E.A.R. and J.Y.L. created virus and stable HT1080 cells for mouse models. J.Y.L. and J.L.C. injected animals with cancer cells and chromophores. J.L.C. prepared plasma. E.A.R., G.N.T., and J.Y.L. purified PCB and analyzed data. L.A.G. performed MS. X.S. chose the Trichodesmium APCα gene and oversaw the first three rounds of evolution of APCα + PCB. R.Y.T. and E.A.R. oversaw the design and analysis of the experiments. All authors contributed to writing and discussion.

Corresponding authors

Correspondence to Erik A Rodriguez or Roger Y Tsien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20 and Supplementary Tables 1–4 (PDF 28027 kb)

Time-lapse microscopy of mAG-hGem(1/110) and smURFP-hCdtI(30/120) FUCCI expressed in HEK293A cells.

Video is full field, 40X objective view of Supplementary Fig. 20 and total time is 70 h. mAG-hGem(1/110) and smURFP-hCdtI(30/120) fluorescence are shown in green and red, respectively. Green is EX / EM = 495(10) / 535(25) nm and red is EX / EX = 628(40) / 680(30) nm. EX is excitation and EM is emission. (MOV 7537 kb)

Time-lapse microscopy of FR and NIR FUCCI expressed in HEK293A cells.

Video is full field, 40X objective view of Fig. 5 and total time is 49 h. IFP2.0-hGem(1/110) and smURFP-hCdtI(30/120) fluorescence are shown in green and red, respectively. Green is EX / EM = 665(45) / 725(50) nm and red is EX / EX = 628(40) / 680(30) nm. EX is excitation and EM is emission. (MOV 5254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, E., Tran, G., Gross, L. et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat Methods 13, 763–769 (2016). https://doi.org/10.1038/nmeth.3935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3935

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing