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POINTS OF SIGNIFICANCE

Multiple linear regression
When multiple variables are associated with 
a response, the interpretation of a prediction 
equation is seldom simple.

Last month we explored how to model a simple relationship 
between two variables, such as the dependence of weight on 
height1. In the more realistic scenario of dependence on several 
variables, we can use multiple linear regression (MLR). Although 
MLR is similar to linear regression, the interpretation of MLR 
correlation coefficients is confounded by the way in which the 
predictor variables relate to one another.

In simple linear regression1, we model how the mean of vari-
able Y depends linearly on the value of a predictor variable X; this 
relationship is expressed as the conditional expectation E(Y|X) 
= b0 + b1X. For more than one predictor variable X1, . . ., Xp, 
this becomes b0 + SbjXj. As for simple linear regression, one can 
use the least-squares estimator (LSE) to determine estimates bj of 
the bj regression parameters by minimizing the residual sum of 
squares, SSE = S(yi – ŷi)

2, where ŷi = b0 + Sjbjxij. When we use the 
regression sum of squares, SSR = S(ŷi –Y–   )2, the ratio R2 = SSR/
(SSR + SSE) is the amount of variation explained by the regres-
sion model and in multiple regression is called the coefficient of 
determination.

The slope bj is the change in Y if predictor j is changed by one unit 
and others are held constant. When normality and independence 
assumptions are fulfilled, we can test whether any (or all) of the 
slopes are zero using a t-test (or regression F-test). Although the 
interpretation of bj seems to be identical to its interpretation in the 
simple linear regression model, the innocuous phrase “and others 
are held constant” turns out to have profound implications.

To illustrate MLR—and some of its perils—here we simulate 
predicting the weight (W, in kilograms) of adult males from their 
height (H, in centimeters) and their maximum jump height (J, in 
centimeters). We use a model similar to that presented in our previ-
ous column1, but we now include the effect of J as E(W|H,J) = bHH 
+ bJJ + b0 + e, with bH = 0.7, bJ = –0.08, b0 = –46.5 and normally 
distributed noise e with zero mean and s = 1 (Table 1). We set bJ 
negative because we expect a negative correlation between W and 
J when height is held constant (i.e., among men of the same height, 
lighter men will tend to jump higher). For this example we simulated 
a sample of size n = 40 with H and J normally distributed with means 
of 165 cm (s = 3) and 50 cm (s = 12.5), respectively.

Although the statistical theory for MLR seems similar to that for 
simple linear regression, the interpretation of the results is much 
more complex. Problems in interpretation arise entirely as a result of 
the sample correlation2 among the predictors. We do, in fact, expect 
a positive correlation between H and J—tall men will tend to jump 
higher than short ones. To illustrate how this correlation can affect 
the results, we generated values using the model for weight with 
samples of J and H with different amounts of correlation.

Let’s look first at the regression coefficients estimated when the 
predictors are uncorrelated, r(H,J) = 0, as evidenced by the zero 
slope in association between H and J (Fig. 1a). Here r is the Pearson 
correlation coefficient2. If we ignore the effect of J and regress W 
on H, we find Ŵ = 0.71H – 51.7 (R2 = 0.66) (Table 1 and Fig. 1b). 
Ignoring H, we find Ŵ = –0.088J + 69.3 (R2 = 0.19). If both predic-
tors are fitted in the regression, we obtain Ŵ = 0.71H – 0.088J – 47.3 
(R2 = 0.85). This regression fit is a plane in three dimensions (H, J, 
W) and is not shown in Figure 1. In all three cases, the results of the 
F-test for zero slopes show high significance (P ≤ 0.005).

When the sample correlations of the predictors are exactly zero, 
the regression slopes (bH and bJ) for the “one predictor at a time” 
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Figure 1 | The results of multiple linear regression depend on the 
correlation of the predictors, as measured here by the Pearson correlation 
coefficient r (ref. 2). (a) Simulated values of uncorrelated predictors, 
r(H,J) = 0. The thick gray line is the regression line, and thin gray lines 
show the 95% confidence interval of the fit. (b) Regression of weight (W) 
on height (H) and of weight on jump height (J) for uncorrelated predictors 
shown in a. Regression slopes are shown (bH = 0.71, bJ = –0.088). 
(c) Simulated values of correlated predictors, r(H,J) = 0.9. Regression and 
95% confidence interval are denoted as in a. (d) Regression (red lines) 
using correlated predictors shown in c. Light red lines denote the 95% 
confidence interval. Notice that bJ = 0.097 is now positive. The regression 
line from b is shown in blue. In all graphs, horizontal and vertical dotted 
lines show average values.

Table 1 | Regression coefficients and R2 for different predictors 
and predictor correlations
Predictors in model Regression coefficients

βH βJ β0

H, J 0.7 –0.08 –46.5

Predictors fitted Estimated regression coefficients

bH bJ b0 R2

Uncorrelated predictors, r(H,J) = 0

H 0.71 –51.7 0.66

J –0.088 69.3 0.19

H, J 0.71 –0.088 –47.3 0.85

Correlated predictors, r(H,J) = 0.9

H 0.44 –8.1 (ns) 0.64

J 0.097 60.2 0.42

H, J 0.63 –0.056 –36.2 0.67
Actual (βH, βJ, β0) and estimated regression coefficients (bH, bJ, b0) and coefficient of 
determination (R2) for uncorrelated and highly correlated predictors in scenarios where either H 
or J or both H and J predictors are fitted in the regression. Regression coefficient estimates for all 
values of predictor sample correlation, r(H,J) are shown in Figure 2. ns, not significant.
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regressions and the multiple regression are identical, and the simple 
regression R2 sums to multiple regression R2 (0.66 + 0.19 = 0.85; 
Fig. 2). The intercept changes when we add a predictor with a non-
zero mean to satisfy the constraint that the least-squares regression 
line goes through the sample means, which is always true when the 
regression model includes an intercept.

Balanced factorial experiments show a sample correlation of zero 
among the predictors when their levels have been fixed. For exam-
ple, we might fix three heights and three jump heights and select 
two men representative of each combination, for a total of 18 sub-
jects to be weighed. But if we select the samples and then measure 
the predictors and response, the predictors are unlikely to have zero 
correlation.

When we simulate highly correlated predictors r(H,J) = 0.9 (Fig. 
1c), we find that the regression parameters change depending on 
whether we use one or both predictors (Table 1 and Fig. 1d). If we 
consider only the effect of H, the coefficient bH = 0.7 is inaccurately 
estimated as bH = 0.44. If we include only J, we estimate bJ = –0.08 
inaccurately, and even with the wrong sign (bJ = 0.097). When we 
use both predictors, the estimates are quite close to the actual coef-
ficients (bH = 0.63, bJ = –0.056).

In fact, as the correlation between predictors r(H,J) changes, the 
estimates of the slopes (bH, bJ) and intercept (b0) vary greatly when 
only one predictor is fitted. We show the effects of this variation for 
all values of predictor correlation (both positive and negative) across 
250 trials at each value (Fig. 2). We include negative correlation 

because although J and H are likely to be positively correlated, other 
scenarios might use negatively correlated predictors (e.g., lung 
capacity and smoking habits). For example, if we include only H 
in the regression and ignore the effect of J, bH steadily decreases 
from about 1 to 0.35 as r(H,J) increases. Why is this? For a given 
height, larger values of J (an indicator of fitness) are associated with 
lower weight. If J and H are negatively correlated, as J increases, H 
decreases, and both changes result in a lower value of W. Conversely, 
as J decreases, H increases, and thus W increases. If we use only H 
as a predictor, J is lurking in the background, depressing W at low 
values of H and enhancing W at high levels of H, so that the effect of 
H is overestimated (bH increases). The opposite effect occurs when J 
and H are positively correlated. A similar effect occurs for bJ, which 
increases in magnitude (becomes more negative) when J and H are 
negatively correlated. Supplementary Figure 1 shows the effect of 
correlation when both regression coefficients are positive.

When both predictors are fitted (Fig. 2), the regression coefficient 
estimates (bH, bJ, b0) are centered at the actual coefficients (bH, bJ, 
b0) with the correct sign and magnitude regardless of the correla-
tion of the predictors. However, the standard error in the estimates 
steadily increases as the absolute value of the predictor correlation 
increases.

Neglecting important predictors has implications not only for R2, 
which is a measure of the predictive power of the regression, but 
also for interpretation of the regression coefficients. Unconsidered 
variables that may have a strong effect on the estimated regression 
coefficients are sometimes called ‘lurking variables’. For example, 
muscle mass might be a lurking variable with a causal effect on both 
body weight and jump height. The results and interpretation of the 
regression will also change if other predictors are added.

Given that missing predictors can affect the regression, should we 
try to include as many predictors as possible? No, for three reasons. 
First, any correlation among predictors will increase the standard 
error of the estimated regression coefficients. Second, having more 
slope parameters in our model will reduce interpretability and cause 
problems with multiple testing. Third, the model may suffer from 
overfitting. As the number of predictors approaches the sample size, 
we begin fitting the model to the noise. As a result, we may seem to 
have a very good fit to the data but still make poor predictions.

MLR is powerful for incorporating many predictors and for esti-
mating the effects of a predictor on the response in the presence 
of other covariates. However, the estimated regression coefficients 
depend on the predictors in the model, and they can be quite vari-
able when the predictors are correlated. Accurate prediction of the 
response is not an indication that regression slopes reflect the true 
relationship between the predictors and the response.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper. 
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Effect of predictor correlation r(H,J ) on regression coefficient estimates and R2
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Figure 2 | Results and interpretation of multiple regression changes with 
the sample correlation of the predictors. Shown are the values of regression 
coefficient estimates (bH, bJ, b0) and R2 and the significance of the test used 
to determine whether the coefficient is zero from 250 simulations at each 
value of predictor sample correlation –1 < r(H,J) < 1 for each scenario where 
either H or J or both H and J predictors are fitted in the regression. Thick and 
thin black curves show the coefficient estimate median and the boundaries 
of the 10th–90th percentile range, respectively. Histograms show the fraction 
of estimated P values in different significance ranges, and correlation 
intervals are highlighted in red where >20% of the P values are >0.01. Actual 
regression coefficients (bH, bJ, b0) are marked on vertical axes. The decrease 
in significance for bJ when jump height is the only predictor and r(H,J) is 
moderate (red arrow) is due to insufficient statistical power (bJ is close to 
zero). When predictors are uncorrelated, r(H,J) = 0, R2 of individual regressions 
sum to R2 of multiple regression (0.66 + 0.19 = 0.85). Panels are organized to 
correspond to Table 1, which shows estimates of a single trial at two different 
predictor correlations.
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