Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial control of membrane receptor function using ligand nanocalipers

Abstract

The spatial organization of membrane-bound ligands is thought to regulate receptor-mediated signaling. However, direct regulation of receptor function by nanoscale distribution of ligands has not yet been demonstrated, to our knowledge. We developed rationally designed DNA origami nanostructures modified with ligands at well-defined positions. Using these 'nanocalipers' to present ephrin ligands, we showed that the nanoscale spacing of ephrin-A5 directs the levels of EphA2 receptor activation in human breast cancer cells. Furthermore, we found that the nanoscale distribution of ephrin-A5 regulates the invasive properties of breast cancer cells. Our ligand nanocaliper approach has the potential to provide insight into the roles of ligand nanoscale spatial distribution in membrane receptor–mediated signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nanocaliper principle and display of ephrin ligands.
Figure 2: Ephrin-A5 conjugate and ephrin-A5–nanocaliper binding abilities.
Figure 3: The spatial distribution of ephrin-A5 ligands directs the phosphorylation levels of the EphA2 receptor.
Figure 4: Ephrin-A5 nanocalipers modulate EphA2 mediated responses in human breast cancer cells.

Similar content being viewed by others

References

  1. Casaletto, J.B. & McClatchey, A.I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat. Rev. Cancer 12, 387–400 (2012).

    Article  CAS  Google Scholar 

  2. Salaita, K. et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327, 1380–1385 (2010).

    Article  CAS  Google Scholar 

  3. Lohmüller, T. et al. Supported membranes embedded with fixed arrays of gold nanoparticles. Nano Lett. 11, 4912–4918 (2011).

    Article  Google Scholar 

  4. Holmberg, J. et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 19, 462–471 (2005).

    Article  CAS  Google Scholar 

  5. Pasquale, E.B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat. Rev. Cancer 10, 165–180 (2010).

    Article  CAS  Google Scholar 

  6. Miao, H. et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16, 9–20 (2009).

    Article  CAS  Google Scholar 

  7. Batlle, E. et al. EphB receptor activity suppresses colorectal cancer progression. Nature 435, 1126–1130 (2005).

    Article  CAS  Google Scholar 

  8. Genander, M. et al. Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell 139, 679–692 (2009).

    Article  CAS  Google Scholar 

  9. Bethani, I., Skånland, S.S., Dikic, I. & Acker-Palmer, A. Spatial organization of transmembrane receptor signalling. EMBO J. 29, 2677–2688 (2010).

    Article  CAS  Google Scholar 

  10. Davis, S. et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816–819 (1994).

    Article  CAS  Google Scholar 

  11. Wykosky, J. et al. Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene 27, 7260–7273 (2008).

    Article  CAS  Google Scholar 

  12. Stein, E. et al. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667–678 (1998).

    Article  CAS  Google Scholar 

  13. Egea, J. et al. Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 47, 515–528 (2005).

    Article  CAS  Google Scholar 

  14. Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  Google Scholar 

  15. Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  16. Högberg, B. & Olin, H. DNA-scaffolded nanoparticle structures. J. Phys. Conf. Ser. 61, 458–462 (2007).

    Article  Google Scholar 

  17. Voigt, N.V. et al. Single-molecule chemical reactions on DNA origami. Nat. Nanotechnol. 5, 200–203 (2010).

    Article  CAS  Google Scholar 

  18. Selmi, D.N. et al. DNA-templated protein arrays for single-molecule imaging. Nano Lett. 11, 657–660 (2011).

    Article  CAS  Google Scholar 

  19. Rinker, S., Ke, Y., Liu, Y., Chhabra, R. & Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotechnol. 3, 418–422 (2008).

    Article  CAS  Google Scholar 

  20. Park, S.H. et al. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett. 5, 729–733 (2005).

    Article  CAS  Google Scholar 

  21. Derr, N.D. et al. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338, 662–665 (2012).

    Article  CAS  Google Scholar 

  22. Douglas, S.M., Bachelet, I. & Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  Google Scholar 

  23. Douglas, S.M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  24. Andersen, E.S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  Google Scholar 

  25. Abulrob, A. et al. Nanoscale imaging of epidermal growth factor receptor clustering: effects of inhibitors. J. Biol. Chem. 285, 3145–3156 (2010).

    Article  CAS  Google Scholar 

  26. Lajoie, P. et al. Plasma membrane domain organization regulates EGFR signaling in tumor cells. J. Cell Biol. 179, 341–356 (2007).

    Article  CAS  Google Scholar 

  27. Castro, C.E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011).

    Article  CAS  Google Scholar 

  28. Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  Google Scholar 

  29. Pitulescu, M.E. & Adams, R.H. Eph/ephrin molecules—a hub for signaling and endocytosis. Genes Dev. 24, 2480–2492 (2010).

    Article  CAS  Google Scholar 

  30. Zhuang, G., Hunter, S., Hwang, Y. & Chen, J. Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-Kinase-dependent Rac1 activation. J. Biol. Chem. 282, 2683–2694 (2007).

    Article  CAS  Google Scholar 

  31. Hiramoto-Yamaki, N. et al. Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J. Cell Biol. 190, 461–477 (2010).

    Article  CAS  Google Scholar 

  32. Macrae, M. et al. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 8, 111–118 (2005).

    Article  CAS  Google Scholar 

  33. Himanen, J.P. et al. Architecture of Eph receptor clusters. Proc. Natl. Acad. Sci. USA 107, 10860–10865 (2010).

    Article  CAS  Google Scholar 

  34. Seiradake, E., Harlos, K., Sutton, G., Aricescu, A.R. & Jones, E.Y. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat. Struct. Mol. Biol. 17, 398–402 (2010).

    Article  CAS  Google Scholar 

  35. Wimmer-Kleikamp, S.H., Janes, P.W., Squire, A., Bastiaens, P.I.H. & Lackmann, M. Recruitment of Eph receptors into signaling clusters does not require ephrin contact. J. Cell Biol. 164, 661–666 (2004).

    Article  CAS  Google Scholar 

  36. Mitov, M.I., Greaser, M.L. & Campbell, K.S. GelBandFitter—a computer program for analysis of closely spaced electrophoretic and immunoblotted bands. Electrophoresis 30, 848–851 (2009).

    Article  CAS  Google Scholar 

  37. Coffman, K.T. et al. Differential EphA2 epitope display on normal versus malignant cells. Cancer Res. 63, 7907–7912 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank U. Lendahl and his lab (Karolinska Institutet) for reagents and discussions, J. Avila-Cariño for help with the FACS experiments, O. Shupliakov for help with TEM, G. Bernardinelli for help with rendering ephrin-A5 and Y.-X. Zhao for help with initial experiments. This work was funded through grants from the Swedish Research Council to B.H. (repatriation grant 2010-6296 and project grant 2010-5060) and by the Strategic Research Program in Stem Cell Research and Regenerative Medicine at Karolinska Institutet (StratRegen), Sweden (A.I.T.). B.H. received startup funding from Carl Bennet AB, Karolinska Institutet and the Swedish Governmental Agency for Innovation Systems (Vinnova). V.L. and A.S. were supported by KID doctoral fellowships from the Karolinska Institutet, Sweden.

Author information

Authors and Affiliations

Authors

Contributions

B.H. and A.I.T. conceived of and designed the study. V.L., A.S. and E.P. performed most of the experimental work. F.F. and E.B. contributed to nanostructure and conjugate production and nanocaliper characterization. A.A.-A., A.H. and A.B. contributed to cell culture and the setting up and validating of the PLA assay. A.B. performed immunoprecipitation and immunoblotting experiments. V.L., A.S., B.H. and A.I.T. wrote the manuscript. All authors contributed to manuscript proofing and discussion.

Corresponding authors

Correspondence to Björn Högberg or Ana I Teixeira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 and Supplementary Table 1 (PDF 9518 kb)

Supplementary Data

Raw FACS source data for Figure 2b. (ZIP 738 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, A., Lundin, V., Petrova, E. et al. Spatial control of membrane receptor function using ligand nanocalipers. Nat Methods 11, 841–846 (2014). https://doi.org/10.1038/nmeth.3025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing