Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comprehensive analysis of RNA-protein interactions by high-throughput sequencing–RNA affinity profiling

Abstract

RNA-protein interactions play critical roles in gene regulation, but methods to quantitatively analyze these interactions at a large scale are lacking. We have developed a high-throughput sequencing–RNA affinity profiling (HiTS-RAP) assay by adapting a high-throughput DNA sequencer to quantify the binding of fluorescently labeled protein to millions of RNAs anchored to sequenced cDNA templates. Using HiTS-RAP, we measured the affinity of mutagenized libraries of GFP-binding and NELF-E–binding aptamers to their respective targets and identified critical regions of interaction. Mutations additively affected the affinity of the NELF-E–binding aptamer, whose interaction depended mainly on a single-stranded RNA motif, but not that of the GFP aptamer, whose interaction depended primarily on secondary structure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T7 RNAP halting with Tus results in stable complexes containing DNA and functional RNA.
Figure 2: RNA-protein interactions can be assayed by HiTS-RAP on an Illumina instrument.
Figure 3: Analysis of a GFPapt library by HiTS-RAP.
Figure 4: Analysis of NELFapt by HiTS-RAP.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Lee, J.T. Epigenetic regulation by long noncoding RNAs. Science 338, 1435–1439 (2012).

    Article  CAS  Google Scholar 

  2. Rinn, J.L. & Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  Google Scholar 

  3. Ji, X. et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell 153, 855–868 (2013).

    Article  CAS  Google Scholar 

  4. Keefe, A.D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).

    Article  CAS  Google Scholar 

  5. Germer, K., Leonard, M. & Zhang, X. RNA aptamers and their therapeutic and diagnostic applications. Int. J. Biochem. Mol. Biol. 4, 27–40 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi, H., Hoffman, B.E. & Lis, J.T. RNA aptamers as effective protein antagonists in a multicellular organism. Proc. Natl. Acad. Sci. USA 96, 10033–10038 (1999).

    Article  CAS  Google Scholar 

  7. König, J., Zarnack, K., Luscombe, N.M. & Ule, J. Protein-RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet. 13, 77–83 (2011).

    Article  Google Scholar 

  8. Wong, I. & Lohman, T.M. A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. Proc. Natl. Acad. Sci. USA 90, 5428–5432 (1993).

    Article  CAS  Google Scholar 

  9. Ryder, S.P., Recht, M.I. & Williamson, J.R. Quantitative analysis of protein-RNA interactions by gel mobility shift. Methods Mol. Biol. 488, 99–115 (2008).

    Article  CAS  Google Scholar 

  10. Pagano, J.M., Clingman, C.C. & Ryder, S.P. Quantitative approaches to monitor protein-nucleic acid interactions using fluorescent probes. RNA 17, 14–20 (2011).

    Article  CAS  Google Scholar 

  11. Salim, N.N. & Feig, A.L. Isothermal titration calorimetry of RNA. Methods 47, 198–205 (2009).

    Article  CAS  Google Scholar 

  12. Katsamba, P.S., Park, S. & Laird-Offringa, I.A. Kinetic studies of RNA-protein interactions using surface plasmon resonance. Methods 26, 95–104 (2002).

    Article  CAS  Google Scholar 

  13. Campbell, Z.T. et al. Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. Cell Rep. 1, 570–581 (2012).

    Article  CAS  Google Scholar 

  14. Martin, L. et al. Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nat. Methods 9, 1192–1194 (2012).

    Article  CAS  Google Scholar 

  15. Tenenbaum, S.A., Carson, C.C., Lager, P.J. & Keene, J.D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl. Acad. Sci. USA 97, 14085–14090 (2000).

    Article  CAS  Google Scholar 

  16. Licatalosi, D.D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  Google Scholar 

  17. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  Google Scholar 

  18. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  Google Scholar 

  19. Nutiu, R. et al. Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument. Nat. Biotechnol. 29, 659–664 (2011).

    Article  CAS  Google Scholar 

  20. Evanko, D. Next-generation protein binding. Nat. Methods 8, 619 (2011).

    Article  CAS  Google Scholar 

  21. Shui, B. et al. RNA aptamers that functionally interact with green fluorescent protein and its derivatives. Nucleic Acids Res. 40, e39 (2012).

    Article  CAS  Google Scholar 

  22. Pagano, J.M. et al. Defining NELF-E RNA binding in HIV-1 and promoter-proximal pause regions. PLoS Genet. 10, e1004090 (2014).

    Article  Google Scholar 

  23. Wu, C.-H. et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev. 17, 1402–1414 (2003).

    Article  CAS  Google Scholar 

  24. Wu, C.-H. et al. Molecular characterization of Drosophila NELF. Nucleic Acids Res. 33, 1269–1279 (2005).

    Article  CAS  Google Scholar 

  25. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).

    Article  CAS  Google Scholar 

  26. Yamaguchi, Y., Inukai, N., Narita, T., Wada, T. & Handa, H. Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol. Cell. Biol. 22, 2918–2927 (2002).

    Article  CAS  Google Scholar 

  27. Mohanty, B.K., Sahoo, T. & Bastia, D. The relationship between sequence-specific termination of DNA replication and transcription. EMBO J. 15, 2530–2539 (1996).

    Article  CAS  Google Scholar 

  28. Kamada, K., Horiuchi, T., Ohsumi, K., Shimamoto, N. & Morikawa, K. Structure of a replication-terminator protein complexed with DNA. Nature 383, 598–603 (1996).

    Article  CAS  Google Scholar 

  29. Mulugu, S. et al. Mechanism of termination of DNA replication of Escherichia coli involves helicase-contrahelicase interaction. Proc. Natl. Acad. Sci. USA 98, 9569–9574 (2001).

    Article  CAS  Google Scholar 

  30. Mulcair, M.D. et al. A molecular mousetrap determines polarity of termination of DNA replication in E. coli. Cell 125, 1309–1319 (2006).

    Article  CAS  Google Scholar 

  31. Guajardo, R. & Sousa, R. Characterization of the effects of Escherichia coli replication terminator protein (Tus) on transcription reveals dynamic nature of the Tus block to transcription complex progression. Nucleic Acids Res. 27, 2814–2824 (1999).

    Article  CAS  Google Scholar 

  32. Holeman, L.A., Robinson, S.L., Szostak, J.W. & Wilson, C. Isolation and characterization of fluorophore-binding RNA aptamers. Fold. Des. 3, 423–431 (1998).

    Article  CAS  Google Scholar 

  33. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  34. Limpert, E. & Stahel, W.A. Problems with using the normal distribution—and ways to improve quality and efficiency of data analysis. PLoS ONE 6, e21403 (2011).

    Article  CAS  Google Scholar 

  35. Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001).

    Article  CAS  Google Scholar 

  36. Buenrostro, J.D. et al. Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat. Biotechnol. 10.1038/nbt.2880 (13 April 2014).

  37. Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of ″parallel″ expression vectors. Protein Expr. Purif. 15, 34–39 (1999).

    Article  CAS  Google Scholar 

  38. McCullum, E.O., Williams, B.A.R., Zhang, J. & Chaput, J.C. Random mutagenesis by error-prone PCR. Methods Mol. Biol. 634, 103–109 (2010).

    Article  CAS  Google Scholar 

  39. Nielsen, R., Paul, J.S., Albrechtsen, A. & Song, Y.S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12, 443–451 (2011).

    Article  CAS  Google Scholar 

  40. Barlow, R. & Blake, J.F. Hill coefficients and the logistic equation. Trends Pharmacol. Sci. 10, 440–441 (1989).

    Article  CAS  Google Scholar 

  41. Xayaphoummine, A., Bucher, T. & Isambert, H. Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33, W605–W610 (2005).

    Article  CAS  Google Scholar 

  42. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Friedman (Institut Pasteur) for providing scripts to extract intensity data, B. Mohanty (Medical University of South Carolina) for providing vectors containing the tus gene, K. Szeto and D. Shalloway for advice on data analysis, W. Zipfel and A. Singh for help in understanding the optics of the GAIIx, C.T. Waters and H. Kwak for bioinformatics advice, the Cornell sequencing core facility for help in learning the GAIIx, and H. Craighead (Cornell University) and the members of the Lis lab for helpful discussions on experimental design and the manuscript. This work was supported by US National Institutes of Health grants GM090320 and DA030329 to J.T.L.

Author information

Authors and Affiliations

Authors

Contributions

Initial idea: A.O. and J.T.L. Experimental design: J.M.T., A.O., D.G., G.P.S. and J.T.L. Experimental implementation: J.M.T., A.O. and J.M.P. HiTS-RAP experiments and bioinformatics analysis: J.M.T. Project coordination: J.T.L. Paper writing: J.M.T., A.O., J.M.P. and J.T.L.

Corresponding author

Correspondence to John T Lis.

Ethics declarations

Competing interests

D.G. and G.P.S. are employees of Illumina, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Notes 1–4 (PDF 13434 kb)

Supplementary Table 1

All GFPapt mutants measured by HiTS-RAP (XLSX 109 kb)

Supplementary Table 2

HiTS-RAP measured GFPapt mutants verified by HiTS-RAP (XLSX 9 kb)

Supplementary Table 3

All GFPapt single base substitution mutants measured by HiTS-RAP (XLSX 40 kb)

Supplementary Table 4

All GFPapt double base substitution mutants measured by HiTS-RAP (XLSX 52 kb)

Supplementary Table 5

All NELFapt mutants measured by HiTS-RAP (XLSX 536 kb)

Supplementary Table 6

All NELFapt single base substitution mutants measured by HiTS-RAP (XLSX 36 kb)

Supplementary Table 7

All NELFapt double base substitution mutants measured by HiTS-RAP (XLSX 674 kb)

Supplementary Table 8

Primers used in this work (XLSX 10 kb)

Supplementary Software

XML recipe used for the GFPapt run, and the Python program used for processing data, through fitting Kd values. (ZIP 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tome, J., Ozer, A., Pagano, J. et al. Comprehensive analysis of RNA-protein interactions by high-throughput sequencing–RNA affinity profiling. Nat Methods 11, 683–688 (2014). https://doi.org/10.1038/nmeth.2970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing