Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions

Abstract

We report a protein-fragment complementation assay (PCA) based on the engineered Deinococcus radiodurans infrared fluorescent protein IFP1.4. Unlike previous fluorescent protein PCAs, the IFP PCA is reversible, allowing analysis of spatiotemporal dynamics of hormone-induced signaling complexes in living yeast and mammalian cells at nanometer resolution. The inherently low background of infrared fluorescence permitted detection of subcellular reorganization of a signaling complex expressed at low abundance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and characterization of IFP PCA.
Figure 2: IFP PCA is reversible.
Figure 3: IFP PCA reversibility in mammalian cells.
Figure 4: Spatiotemporal localization of protein complexes in living eukaryotic cells.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ghosh, I., Hamilton, A.D. & Regan, L. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    Article  CAS  Google Scholar 

  2. MacDonald, M.L. et al. Nat. Chem. Biol. 2, 329–337 (2006).

    Article  CAS  Google Scholar 

  3. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Mol. Cell 9, 789–798 (2002).

    Article  CAS  Google Scholar 

  4. Johnsson, N. & Varshavsky, A. Proc. Natl. Acad. Sci. USA 91, 10340–10344 (1994).

    Article  CAS  Google Scholar 

  5. Michnick, S.W., Ear, P.H., Manderson, E.N., Remy, I. & Stefan, E. Nat. Rev. Drug Discov. 6, 569–582 (2007).

    Article  CAS  Google Scholar 

  6. Remy, I. & Michnick, S.W. Nat. Methods 3, 977–979 (2006).

    Article  CAS  Google Scholar 

  7. Stefan, E. et al. Proc. Natl. Acad. Sci. USA 104, 16916–16921 (2007).

    Article  CAS  Google Scholar 

  8. Tarassov, K. et al. Science 320, 1465–1470 (2008).

    Article  CAS  Google Scholar 

  9. Michnick, S.W., Remy, I., Campbell-Valois, F.X., Vallée-Bélisle, A. & Pelletier, J.N. Methods Enzymol. 328, 208–230 (2000).

    Article  CAS  Google Scholar 

  10. Shu, X. et al. Science 324, 804–807 (2009).

    Article  Google Scholar 

  11. Wagner, J.R., Brunzelle, J.S., Forest, K.T. & Vierstra, R.D. Nature 438, 325–331 (2005).

    Article  CAS  Google Scholar 

  12. Filonov, G.S. & Verkhusha, V.V. Chem. Biol. 20, 1078–1086 (2013).

    Article  CAS  Google Scholar 

  13. Bornschlögl, T. et al. Biophys. J. 96, 1508–1514 (2009).

    Article  Google Scholar 

  14. Ear, P.H. & Michnick, S.W. Nat. Methods 6, 813–816 (2009).

    Article  CAS  Google Scholar 

  15. Mumberg, D., Müller, R. & Funk, M. Gene 156, 119–122 (1995).

    Article  CAS  Google Scholar 

  16. Block, C., Janknecht, R., Herrmann, C., Nassar, N. & Wittinghofer, A. Nat. Struct. Biol. 3, 244–251 (1996).

    Article  CAS  Google Scholar 

  17. Taylor, S.S. et al. Biochim. Biophys. Acta 1697, 259–269 (2004).

    Article  CAS  Google Scholar 

  18. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    Article  CAS  Google Scholar 

  19. Malleshaiah, M.K., Shahrezaei, V., Swain, P.S. & Michnick, S.W. Nature 465, 101–105 (2010).

    Article  CAS  Google Scholar 

  20. Zheng, Y. et al. Nature 499, 166–171 (2013).

    Article  CAS  Google Scholar 

  21. Kostecki, J.S., Li, H., Turner, R.J. & DeLisa, M.P. PLoS ONE 5, e9225 (2010).

    Article  Google Scholar 

  22. Sambrook, J.F. & Russell, D.W. Molecular Cloning: A Laboratory Manual 3rd edn. (Cold Spring Harbor, 2001).

  23. Goldstein, A.L. & McCusker, J.H. Yeast 15, 1541–1553 (1999).

    Article  CAS  Google Scholar 

  24. Auldridge, M.E., Satyshur, K.A., Anstrom, D.M. & Forest, K.T. J. Biol. Chem. 287, 7000–7009 (2012).

    Article  CAS  Google Scholar 

  25. Chen, D., Brown, J.D., Kawasaki, Y., Bommer, J. & Takemoto, J.Y. BMC Biotechnol. 12, 89 (2012).

    Article  CAS  Google Scholar 

  26. Anand, G., Taylor, S.S. & Johnson, D.A. Biochemistry 46, 9283–9291 (2007).

    Article  CAS  Google Scholar 

  27. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  28. Zaccolo, M. et al. Nat. Cell Biol. 2, 25–29 (2000).

    Article  CAS  Google Scholar 

  29. Di Guglielmo, G.M., Baass, P.C., Ou, W.J., Posner, B.I. & Bergeron, J.J. EMBO J. 13, 4269–4277 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.Y. Tsien (University of California) for providing the pBADb2e IFP1.4-HO1 plasmid, S. Kalynych from the M. Cygler laboratory (University of Saskatchewan) for providing us with the bacterial plasmid p15A-Kan and G. Ferbeyre (Université de Montréal) for providing the pLpC retroviral vector. We also thank C. Mazurek, P.H. Ear, M. Malleshaiah, V. Messier, V. Bourdeau, E. Querido, D. Gagné and M. Vasseur for support and discussions. The authors acknowledge support from Canadian Institutes of Health Research grants MOP-GMX-152556 and MOP-GMX-231013 and Natural Sciences and Engineering Research Council of Canada grant 194582 (to SWM).

Author information

Authors and Affiliations

Authors

Contributions

E.T. designed the experiments, engineered IFP PCA fragments, generated constructs, developed and performed assays in E. coli and S. cerevisiae, analyzed the results and wrote the manuscript. D.S. designed experiments with mammalian cells (U2OS and HeLa), generated constructs and stable cell lines, analyzed the results and wrote the manuscript. S.W.M. designed the experiments, supervised the project, analyzed the results and wrote the manuscript.

Corresponding author

Correspondence to Stephen W Michnick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–6 (PDF 825 kb)

Time-lapse movie of SHC1-GRB2 interaction in response to EGF.

HeLa cells expressing the SHC1-GRB2 IFP PCA reporter show basal level expression (time 0, frame 1). After addition of EGF at concentration of 20 ng/mL (frame 2), the SHC1-GRB2 complexes are incorporated into endosomes over time. Final frame was imaged at 49 minutes after addition of EGF. (AVI 4888 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchekanda, E., Sivanesan, D. & Michnick, S. An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions. Nat Methods 11, 641–644 (2014). https://doi.org/10.1038/nmeth.2934

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing