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results, when the researcher may be willing to pursue low-
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  
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Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both specific (low false positive rate, a) and 
sensitive (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing specificity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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Erratum: Power and sample size
Martin Krzywinski & Naomi Altman
Nat. Methods 10, 1139–1140 (2013); published online 26 November 2013; corrected after print 26 November 2013

In the print version of this article initially published, the symbol m0 was represented incorrectly in the equation for effect size, d = (mA – m0)/s. 
The error has been corrected in the HTML and PDF versions of the article.
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Erratum: Power and sample size
Martin Krzywinski & Naomi Altman
Nat. Methods 10, 1139–1140 (2013); published online 26 November 2013; corrected after print 26 November 2013; corrected after print  
3 August 2015

In the version of this article initially published, the terms “sensitivity” and “specificity” and the related descriptors “sensitive” and “specific” 
were mistakenly switched in three instances. The errors have been corrected in the HTML and PDF versions of the article.
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