Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Neutron-encoded mass signatures for multiplexed proteome quantification

Abstract

We describe a protein quantification method called neutron encoding that exploits the subtle mass differences caused by nuclear binding energy variation in stable isotopes. These mass differences are synthetically encoded into amino acids and incorporated into yeast and mouse proteins via metabolic labeling. Mass spectrometry analysis with high mass resolution (>200,000) reveals the isotopologue-embedded peptide signals, permitting quantification. Neutron encoding will enable highly multiplexed proteome analysis with excellent dynamic range and accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NeuCode feasibility and scan sequence.
Figure 2: NeuCode SILAC quantitative results.

Similar content being viewed by others

References

  1. Domon, B. & Aebersold, R. Nat. Biotechnol. 28, 710–721 (2010).

    Article  CAS  Google Scholar 

  2. Altelaar, A.F.M. et al. J. Proteomics published online, http://dx.doi.org/10.1016/j.jprot.2012.10.009 (18 October 2012).

  3. Ong, S.E. et al. Mol. Cell Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  4. Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Proc. Natl. Acad. Sci. USA 96, 6591–6596 (1999).

    Article  CAS  Google Scholar 

  5. Gygi, S.P. et al. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  6. Thompson, A. et al. Anal. Chem. 75, 1895–1904 (2003).

    Article  CAS  Google Scholar 

  7. Ross, P.L. et al. Mol. Cell Proteomics 3, 1154–1169 (2004).

    Article  CAS  Google Scholar 

  8. Hsu, J.-L., Huang, S.-Y., Chow, N.-H. & Chen, S.-H. Anal. Chem. 75, 6843–6852 (2003).

    Article  CAS  Google Scholar 

  9. Choe, L. et al. Proteomics 7, 3651–3660 (2007).

    Article  CAS  Google Scholar 

  10. McAlister, G.C. et al. Anal. Chem. 84, 7469–7478 (2012).

    Article  CAS  Google Scholar 

  11. Werner, T. et al. Anal. Chem. 84, 7188–7194 (2012).

    Article  CAS  Google Scholar 

  12. Ow, S.Y. et al. J. Proteome Res. 8, 5347–5355 (2009).

    Article  CAS  Google Scholar 

  13. Wenger, C.D. et al. Nat. Methods 8, 933–935 (2011).

    Article  CAS  Google Scholar 

  14. Grimsrud, P.A. et al. Cell Metab. 16, 672–683 (2012).

    Article  CAS  Google Scholar 

  15. Sleno, L. J. Mass Spectrom. 47, 226–236 (2012).

    Article  CAS  Google Scholar 

  16. Denisov, E., Damoc, E., Lange, O. & Makarov, A. Int. J. Mass Spectrom. 325–327, 80–85 (2012).

    Article  Google Scholar 

  17. Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C. & Marshall, A.G. Anal. Chem. 82, 8807–8812 (2010).

    Article  CAS  Google Scholar 

  18. Schaub, T.M. et al. Anal. Chem. 80, 3985–3990 (2008).

    Article  CAS  Google Scholar 

  19. Michalski, A. et al. Mol. Cell Proteomics 11, O111.013698 (2012).

    Article  Google Scholar 

  20. Cui, Z. et al. Proteomics 9, 1274–1292 (2009).

    Article  CAS  Google Scholar 

  21. Elias, J.E. & Gygi, S.P. Nat. Methods 4, 207–214 (2007).

    Article  CAS  Google Scholar 

  22. Geer, L.Y. et al. J. Proteome Res. 3, 958–964 (2004).

    Article  CAS  Google Scholar 

  23. Nesvizhskii, A.I. & Aebersold, R. Mol. Cell Proteomics 4, 1419–1440 (2005).

    Article  CAS  Google Scholar 

  24. Wenger, C.D., Phanstiel, D.H., Lee, M.V., Bailey, D.J. & Coon, J.J. Proteomics 11, 1064–1074 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.J. Bureta for help with figure illustrations, R. Manis for critical proofreading and A. Gasch (University of Wisconsin-Madison) for assistance in the culturing of yeast cells. This work was supported by US National Institutes of Health (NIH) grant R01 GM080148 to J.J.C. A.E.M. gratefully acknowledges support from an NIH-funded Genomic Sciences Training Program (5T32HG002760). This work was also supported by a Searle Scholars Award and Shaw Scientist award to D.J.P. and a National Science Foundation graduate fellowship and NIH training grant 5T32GM007215-37 to A.J.S.

Author information

Authors and Affiliations

Authors

Contributions

A.S.H. and A.E.M. designed and performed research, analyzed data and wrote the paper; D.J.B. performed theoretical calculations; M.S.W. analyzed data; E.R.S. designed research studies; D.J.P. and A.J.S. designed and prepared the murine model system; J.J.C. designed research studies and wrote the paper.

Corresponding author

Correspondence to Joshua J Coon.

Ethics declarations

Competing interests

A.S.H. and J.J.C. are co-inventors on a patent application (US 13/660677) related in part to the material presented here.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2012 kb)

Supplementary Table 1

Myogenic differentiation protein quantitation (XLSX 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebert, A., Merrill, A., Bailey, D. et al. Neutron-encoded mass signatures for multiplexed proteome quantification. Nat Methods 10, 332–334 (2013). https://doi.org/10.1038/nmeth.2378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing