Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Staining and embedding the whole mouse brain for electron microscopy

Abstract

The development of methods for imaging large contiguous volumes with the electron microscope could allow the complete mapping of a whole mouse brain at the single-axon level. We developed a method based on prolonged immersion that enables staining and embedding of the entire mouse brain with uniform myelin staining and a moderate preservation of the tissue's ultrastructure. We tested the ability to follow myelinated axons using serial block-face electron microscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Whole mouse brain stained with wbPATCO and embedded with Quetol.
Figure 2: Traceability analysis of eight regions of interest (ROIs) in the mouse brain.
Figure 3: Analysis of axon morphological diversity and tracing error rate.

Similar content being viewed by others

References

  1. Kasthuri, N. & Lichtman, J.W. Nat. Methods 4, 307–308 (2007).

    Article  CAS  Google Scholar 

  2. Bohland, J.W. et al. PLoS Comput. Biol. 5, e1000334 (2009).

    Article  Google Scholar 

  3. Tsai, P.S. et al. J. Neurosci. 29, 14553–14570 (2009).

    Article  CAS  Google Scholar 

  4. Sabatini, D.D., Bensch, K. & Barrnett, R.J. J. Cell Biol. 17, 19–58 (1963).

    Article  CAS  Google Scholar 

  5. Dalton, A.J., Kahler, H., Striebich, M.J. & Lloyd, B. J. Natl. Cancer Inst. 11, 439–461 (1950).

    CAS  PubMed  Google Scholar 

  6. Palay, S.L., McGee-Russell, S.M., Gordon, S. Jr. & Grillo, M.A. J. Cell Biol. 12, 385–410 (1962).

    Article  CAS  Google Scholar 

  7. Seligman, A.M., Wasserkrug, H.L. & Hanker, J.S. J. Cell Biol. 30, 424–432 (1966).

    Article  CAS  Google Scholar 

  8. Li, A. et al. Science 330, 1404–1408 (2010).

    Article  CAS  Google Scholar 

  9. Chung, J.R. et al. Front. Neuroinform. 5, 29 (2011).

    Article  Google Scholar 

  10. Dempster, W.T. Am. J. Anat. 107, 59–72 (1960).

    Article  CAS  Google Scholar 

  11. Hagström, L. & Bahr, G.F. Histochem. Cell Biol. 2, 1–4 (1960).

    Article  Google Scholar 

  12. Bozzola, J.J. & Russell, L.D. Electron Microscopy: Principles and Techniques for Biologists. (Jones & Bartlett Learning, 1999).

  13. Hayat, M.A. Principles and Techniques of Electron Microscopy: Biological Applications, 4th edn. (Cambridge University Press, 2000).

  14. Van Holde, K.E. J. Phys. Chem. 63, 1574–1577 (1959).

    Article  CAS  Google Scholar 

  15. Bahr, G.F. Exp. Cell Res. 7, 457–479 (1954).

    Article  CAS  Google Scholar 

  16. Guha, P.C. & De, S.C. J. Chem. Soc. Trans. 125, 1215–1218 (1924).

    Article  CAS  Google Scholar 

  17. De Bruijn, W.C. in Proc. 4th Eur. Reg. Conf. Electron Microsc. (ed. Bocciarelli, D.S.) 11–65 (Rome: Tipografia Polyglotta Vaticana, 1968).

  18. Karnovsky, M.J. in Proc. 11th Meet. Am. Soc. Cell Biol. 146 (1971).

  19. Seligman, A.M., Hanker, J.S., Wasserkrug, H., Dmochowski, H. & Katzoff, L. J. Histochem. Cytochem. 13, 629–639 (1965).

    Article  CAS  Google Scholar 

  20. Quarles, R.H., Macklin, W.B. & Morell, P. in Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 7th edn. (eds. Siegel, G., Albers, R.W., Brady, S. & Price, D.) Ch. 4, 51–72 (Academic, 2006).

  21. Spurr, A.R. J. Ultrastruct. Res. 26, 31–43 (1969).

    Article  CAS  Google Scholar 

  22. Kushida, H. J. Electron Microsc. (Tokyo) 23, 197 (1974).

    CAS  Google Scholar 

  23. Partadiredja, G., Miller, R. & Oorschot, D.E. J. Neurocytol. 32, 1165–1179 (2003).

    Article  Google Scholar 

  24. Sturrock, R.R. Neuropathol. Appl. Neurobiol. 6, 415–420 (1980).

    Article  CAS  Google Scholar 

  25. Denk, W. & Horstmann, H. PLoS Biol. 2, e329 (2004).

    Article  Google Scholar 

  26. Terzakis, J.A. J. Ultrastruct. Res. 22, 168–184 (1968).

    Article  CAS  Google Scholar 

  27. Walton, J. J. Histochem. Cytochem. 27, 1337–1342 (1979).

    Article  CAS  Google Scholar 

  28. Willingham, M.C. & Rutherford, A.V. J. Histochem. Cytochem. 32, 455–460 (1984).

    Article  CAS  Google Scholar 

  29. Deerinck, T.J. et al. Microsc. Microanal. 16 (suppl. 2), 1138–1139 (2010).

    Article  CAS  Google Scholar 

  30. Luft, J.H. Anat. Rec. 133, 305 (1959).

    Google Scholar 

  31. Binding, J., Mikula, S. & Denk, W. Microsc. Microanal. (in the press).

  32. Holland, P.W. & Welsch, R.E. Commun. Stat. Theory Methods 6, 813–827 (1977).

    Article  Google Scholar 

  33. Baumann, M. et al. in Proc. 6th PIMS Ind. Problem Solving Workshop (ed. Macki, J.) Ch. 1, 1–25 (PIMS, 2002).

  34. Mikula, S., Trotts, I., Stone, J.M. & Jones, E.G. Neuroimage 35, 9–15 (2007).

    Article  Google Scholar 

  35. Reynolds, E.S. J. Cell Biol. 17, 208–212 (1963).

    Article  CAS  Google Scholar 

  36. Franklin, K.B.J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates 3rd edn. (Academic, 2008).

Download references

Acknowledgements

We thank I. Sonntag and M. Helmstaedter for help with traceability analysis, S. Hillmer and U. Mersdorf for help with transmission electron microscopy, K. Briggman, S.K. Mikula and A. Scherbarth for help with staining procedures, B. Titze for help with conductive coating, J. Tritthardt for developing electronic circuits and M. Mueller for help with scanning electron microscopy–related software. We also thank the following student tracers: M. Diemer, C. Domnick, J. Hanne, P. Hofmann, A. Ivanova, H. Jakobi, A. Klein, J. Löffler, J. Nassel, J. Trendel and P. Weber. This work was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Contributions

S.M. and W.D. designed the study and devised the analysis; S.M. carried out the experiments; J.B. and W.D. devised the aberration correction algorithm; S.M. analyzed the data; and S.M. and W.D. wrote the paper.

Corresponding authors

Correspondence to Shawn Mikula or Winfried Denk.

Ethics declarations

Competing interests

W.D. receives license income for 3View serial block-face electron microscopy technology from Gatan.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1, Supplementary Tables 1–3 and Supplementary Protocol (PDF 663 kb)

Fly-through of a subregion from the internal capsule region of interest.

Voxel size is 40 nm isotropic (MOV 24047 kb)

Rotation animation of axon tracings from the ventroposterolateral nucleus of the dorsal thalamus.

Nodes of Ranvier are indicated by small gray spheres (MOV 17598 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikula, S., Binding, J. & Denk, W. Staining and embedding the whole mouse brain for electron microscopy. Nat Methods 9, 1198–1201 (2012). https://doi.org/10.1038/nmeth.2213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing