Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging

Abstract

We describe a mass spectrometry method, QuantMode, which improves accuracy of isobaric tag–based quantification by alleviating the pervasive problem of precursor interference, simultaneous isolation and fragmentation of impurities, through gas-phase purification. QuantMode analysis of a yeast sample 'contaminated' with interfering human peptides showed substantially improved quantitative accuracy compared to a standard scan, with a small loss of spectral identifications. This technique enables large-scale, multiplexed quantitative proteomics using isobaric tagging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the precursor purity model and quantitative accuracy model samples with either HCD MS/MS or QuantMode.
Figure 2: Overview of QuantMode.

Similar content being viewed by others

References

  1. de Godoy, L.M.F. et al. Nature 455, 1251–1254 (2008).

    Article  CAS  Google Scholar 

  2. Ong, S.E. & Mann, M. Nat. Chem. Biol. 1, 252–262 (2005).

    Article  CAS  Google Scholar 

  3. Jiang, H. & English, A.M. J. Proteome Res. 1, 345–350 (2002).

    Article  CAS  Google Scholar 

  4. Ong, S.E. et al. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  5. Olsen, J.V. et al. Sci. Signal. 3, ra3 (2010).

    Article  Google Scholar 

  6. Thompson, A. et al. Anal. Chem. 75, 1895–1904 (2003).

    Article  CAS  Google Scholar 

  7. Ross, P.L. et al. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    Article  CAS  Google Scholar 

  8. Choe, L. et al. Proteomics 7, 3651–3660 (2007).

    Article  CAS  Google Scholar 

  9. Dayon, L. et al. Anal. Chem. 80, 2921–2931 (2008).

    Article  CAS  Google Scholar 

  10. Lu, R. et al. Nature 462, 358–362 (2009).

    Article  CAS  Google Scholar 

  11. Ow, S.Y. et al. J. Proteome Res. 8, 5347–5355 (2009).

    Article  CAS  Google Scholar 

  12. Wenger, C.D., Phanstiel, D.H., Lee, M.V., Bailey, D.J. & Coon, J.J. Proteomics 11, 1064–1074 (2011).

    Article  CAS  Google Scholar 

  13. Reid, G.E., Shang, H., Hogan, J.M., Lee, G.U. & McLuckey, S.A. J. Am. Chem. Soc. 124, 7353–7362 (2002).

    Article  CAS  Google Scholar 

  14. Liang, X. & McLuckey, S.A. J. Am. Soc. Mass Spectrom. 18, 882–890 (2007).

    Article  CAS  Google Scholar 

  15. McAlister, G.C., Phanstiel, D.H., Brumbaugh, J., Westphall, M.S. & Coon, J.J. Mol. Cell. Proteomics 10, 009456 (2011).

    Article  Google Scholar 

  16. Ludwig, T.E. et al. Nat. Methods 3, 637–646 (2006).

    Article  CAS  Google Scholar 

  17. Lee, M.V. et al. Mol. Syst. Biol. 7, 514 (2011).

    Article  Google Scholar 

  18. Martin, S.E., Shabanowitz, J., Hunt, D.F. & Marto, J.A. Anal. Chem. 72, 4266–4274 (2000).

    Article  CAS  Google Scholar 

  19. Geer, L.Y. et al. J. Proteome Res. 3, 958–964 (2004).

    Article  CAS  Google Scholar 

  20. Elias, J.E. & Gygi, S.P. Nat. Methods 4, 207–214 (2007).

    Article  CAS  Google Scholar 

  21. Cherry, J.M. et al. Nucleic Acids Res. 26, 73–79 (1998).

    Article  CAS  Google Scholar 

  22. Kersey, P.J. et al. Proteomics 4, 1985–1988 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.J. Bureta for figure illustrations, A. Williams for proofreading, A. Ledvina and D. Bailey for assistance with instrument firmware code modifications, S. Hubler for theoretical calculations regarding yeast and human peptides, J. Brumbaugh and J. Thomson for culturing the human cells, and J. Syka, J. Schwartz, V. Zabrouskov, J. Griep-Raming and D. Nolting for helpful discussions. This work was supported by US National Institutes of Health grant R01 GM080148 to J.J.C. D.H.P. acknowledges support from an National Institutes of Health Genomic Sciences Training Program (5T32HG002760).

Author information

Authors and Affiliations

Authors

Contributions

C.D.W. designed and performed research, and wrote the paper; M.V.L., A.S.H. and G.C.M. designed and performed research; D.H.P. designed research; M.S.W. and J.J.C. designed research and wrote the paper.

Corresponding author

Correspondence to Joshua J Coon.

Ethics declarations

Competing interests

Two patent applications, in part related to this manuscript, are pending: US 13/086638 (C.D.W., D.H.P. and J.J.C. are the inventors) and US 61/471461 (J.J.C. and M.S.W. are the inventors).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1, Supplementary Note, Supplementary Protocol (PDF 1940 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenger, C., Lee, M., Hebert, A. et al. Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods 8, 933–935 (2011). https://doi.org/10.1038/nmeth.1716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing