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Sorting out sequencing data
Monya Baker

The toughest work is not sequencing a genome: it is finding the mutations that matter.

exomes versus whole genomes 801

digging deep or wandering wide 802

making a list and checking it twice 803

Box 1: designing a sequencing pipeline for a clinical setting 800

Alexis Beery literally breathes easier after 
having her genome sequenced. She and her 
twin brother, Noah, were diagnosed with 
dopa-responsive dystonia at age five, but 
when Alexis developed a life-threatening 
cough six years later, doctors thought it 
was an unrelated condition. Luckily for 
them, their father, chief information offi-
cer at Life Technologies, got the twins into a 
study as a part of which their genomes were 
sequenced. Results revealed mutations in a 
gene that encodes an enzyme crucial for 
making the neurotransmitters serotonin 
and dopamine1. Although the twins were 
already taking a precursor of dopamine for 
the dystonia, the sequencing results indicat-
ed that a precursor for serotonin could help, 
too. It did. Now Alexis’s breathing problems 
are gone, and her brother’s health has also 
improved2.

Alexis and Noah are just two of thou-
sands of people whose genomes have been 
sequenced, and that number is growing. 
The first full human genome sequence 
required over a decade and roughly three 
billion dollars. Now, a high-coverage 
sequence can be had in less than ten weeks, 
at a raw cost of around $4,000.

The result is a surfeit of data on human 
genetic variation, with researchers strug-
gling to work out the best ways to extract 
useful information from the data. The 
focus has shifted from generating sequenc-
es to hunting for the critical sequence dif-
ferences that distinguish individuals from 
each other and health from disease. This 
requires a multistep analysis and  is much 
less certain than identifying a string of 
nucleotides.    

 “The excitement about the ability to 
sequence human genomes is justified,” 
says David Goldstein at Duke University. 
“But it’s also true that one of the frustrat-
ing things is that almost everything you 

do affects the sequence that comes out the 
other side. This is a big, complicated and 
dynamic enterprise, figuring out sequenc-
ing data. And it’s changing every month.”

Few can expect benefits as dramatic as the 
Beery twins’. Right now, in fact, few people 
can expect to benefit at all. For one thing, 
finding the cause of a disease is usually easier 
than finding a treatment. For another, deter-
mining what causes a disease is rarely so 
straightforward. If personal sequencing data 
are to become more useful, researchers not 
only need more data from more genomes but 
also need to get better at identifying variants 
and figuring out their biological relevance.

getting to variants
Some variants are unique to a particular 
individual; other variants will be shared 

by others with a similar trait or disease. 
Finding variants in genomes is like assem-
bling and comparing incomplete jigsaw 
puzzles of two nearly identical pictures. It 
can be hard to tell whether differences are 
from how the puzzle pieces are cut or from 
the pictures themselves.

The process of identifying variants 
requires highly specialized software. Next-
generation sequencing technologies break 
the three-billion base pair human genome 
into pieces; depending on the machine 
being used, sequenced fragments, called 
‘reads’, can be as short as 50 base pairs or 
longer than 1,000 base pairs. These reads 
are aligned to and compared with a ref-
erence genome. The number of variants, 
or places at which an individual genome 
differs from the (acknowledged to be  
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sequencing machines are constantly being 
introduced. Reads get longer and more 
accurate. Commercial kits are also get-
ting better for amplifying and sequenc-
ing exomes, the protein-coding portions 
of the genome. Although these improve-
ments make for reads that are easier to 
align, they also force a constant redesign 
of error-catching filters.

DePristo and colleagues recently pub-
lished a description of the genome analy-
sis toolkit (GATK), which runs sequenc-
ing data through a series of analysis and 
error-correcting algorithms to produce 
a list of variants3. It can make sense of 
very different data sets: exome sequenc-
ing, very high, (60×) coverage sequencing 
(meaning that each base is read an average 
of 60 times) and very low (4×) coverage 
sequencing. The 2011 publication used 
sequencing data produced by machines 
sold by Il lumina, Life Technologies 
and 454 Roche, but DePristo believes 
that the toolkit can work across more  

imperfect) reference genome, runs into 
the low millions. Compiling these long 
lists is even more complicated than it 
sounds: every step is riddled with errors. 
But by learning the patterns of errors that 
machines make, researchers are getting 
better at detecting artifacts. “The thing 
that we really assume is that real genetic 
variation doesn’t look like machine error,” 
says Mark DePristo, who leads the group 
developing algorithms for next-generation 
DNA sequencers at the Broad Institute.

Some of the first error-catching filters are 
for redundant and faulty reads. These can be 
identified in many ways. One means of error 
correction relies on the fact that sequenced 
fragments incorporate mistakes faster as 
they get longer. This knowledge can be used 
by researchers to ‘trim’ sequences back, or to 
choose which sequence is more likely to be 
correct when judging discrepancies between 
overlapping reads.

An ongoing challenge is that machine-
generated variation keeps changing. New 

boX 1 deSiGninG a SeQUenCinG pipeLine for 
a CLiniCaL SettinG
Many rare, inherited diseases have still not been pinned to a 
particular mutation. Even when the genes behind a heritable 
disease are known, sequencing can be used to find genetic 
variants that established tests miss. Although some clinical 
genetic testing services may screen as many as 100 genes, 
these tests generally look for previously observed mutations 
rather than potential unknown errors. In an effort to diagnose 
rare diseases in very young individuals, Stephen Kingsmore 
and colleagues have taken their sequencing analysis 
expertise, developed at the US National Center for Genome 
Resources, and are applying it at the Center for Pediatric 
Genomic Medicine at Children’s Mercy Hospital. They plan 
to use sequencing to look for new variants in a set of nearly 
600 genes associated with childhood diseases, with follow-
up studies expanding the search to exome sequences. Even 
though important mutations certainly exist outside of that 
set, says Kingsmore, the goal is to focus on mutations that 
will be easier to find and interpret.

Such a clinically focused project puts special demands 
on variant-calling pipelines. For neonatal testing, speed is 
paramount, a constraint that makes matching reads to each other for paired-end 
analysis impractical, says Neil Miller, deputy director of informatics at the center. 
Instead, the algorithms rely on the first 100 letters of a typical 120-nucleotide read, 
discarding the most error-prone regions.

In addition to being fast, the pipeline must be simple, with minimal manual 
tweaking of parameters. Most importantly, it must reduce the number of false calls. 
Focusing on just a few hundred genes means that the project will catch less of the 
variation, but for this kind of diagnostic approach, the trade-off is worth it, says 
Kingsmore. “We have to produce information that’s not just going into a manuscript, 
it’s going into a hospital chart.”

Stephen Kingsmore 
at Children’s Mercy 
Hospital is developing 
a pipeline for finding 
variants that cause rare 
diseases. If clinicians 
are to make sense of 
the data, he says, “you 
need something highly 
standardized and 
authoritative.”
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is very different from scanning for rare, 
inherited variants that raise susceptibility 
to disease, explains Thomas Barber, genet-
ics group leader at Eli Lilly. “Different 
pipelines give different results, and even 
within a pipeline, tweaking parameters 
gives different results, and that’s not always 
a bad thing.” Though time and computing 
cost prohibit doing so on every genome, he 
says, it is prudent to run the same genome 
through several pipelines at the beginning 
of a project to determine what sort of anal-
ysis works best for a particular biological 
question.

exomes versus whole genomes
Researchers sometimes winnow the 
amount of sequencing and analysis they 
need to perform by focusing only on 
exomes. This represents about 1% of the 
total sequence and costs about a tenth of 
the price of sequencing a whole genome. 
Commercially available kits from com-
panies including Agilent and Roche 
NimbleGen selectively copy these regions 
from individuals’ DNA. In a typical  

often combine well over 100 components.
GATK is probably the most widely used 

pipeline: a cloud-based logging service 
records 100,000 runs of the program a day, 
says DePristo. SAMtools, an open-access 
program produced collaboratively by the 
Broad and Sanger institutes, is also popu-
lar4. Fee-for-service sequencing offer-
ings from BGI, Complete Genomics and 
Illumina have their own variant-calling 
pipelines for the sequences they produce. 
Informatics company Accelrys offers 
Pipeline Pilot, a suite of visual program-
ming tools for integrating open-source, 
proprietary and third-party sequenc-
ing algorithms. It handles data from 454 
Roche, Illumina and Life Technologies, 
and it  wil l  be shipped with Oxford 
Nanopore when that company launches 
its single-molecule sequencing system.

Bioinformatics teams in drug companies 
and academic centers alike are struggling 
with a veritable plethora of parameters. 
Hunting for acquired cancer mutations 
requires comparing an individual’s tumor 
cells to healthy cells, for example, and so 

platforms. In fact, 
the team is about 
to publish results 
u s i n g  i n s t r u -
ments from Pacific 
Biosciences, which 
began shipping its 
machines only in 
Apri l  2011.  “We 
have a model for 
true genetic varia-
tion, and we can 
apply that to derive 
what are real varia-
tions and machine 
a r t i f a c t s ,”  s a y s 
DePristo. “We are 
learning the error 
pro cess  of  each 

individual run of the machine.”
Software tools to analyze sequencing 

data are expanding rapidly, so many bio-
informatics teams are looking for ways to 
combine these algorithms into straight-
forward workflows. These efforts result in 
‘pipelines’, or assemblies of algorithms that 

Mark DePristo of 
the Broad Institute 
says algorithms are 
getting better for 
finding variants from 
sequencing data, but 
tools so far are much 
better at finding 
single-nucleotide 
variants.
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digging deep or 
wandering wide
Even if research-
ers opt for whole-
genome sequenc-
ing, they still need 
t o  d e c i d e  h o w 
deep to go in the 
sequencing  and 
analysis. Deeper 
a n a l y s i s  a l l ow s 
more variants to 
be identified with 
greater confidence, 
but shallower anal-
ysis allows more 
g e n o m e s  t o  b e 
studied, providing 

the sample sizes necessary to confirm that 
a variant with small effects is significantly 
associated with disease. “You don’t have 
to know all the variation in an individu-
al,” says DePristo, who is participating in 
studies to find variants that contribute to 
risk for autism, diabetes and heart condi-
tions. “Unless you’re trying to find really 
rare things, you are better off looking for 
common variants that are skewed between 
cases and controls.”

Whether researchers should look for 
rare mutations with large effects or com-
mon ones with small effects is a matter of 
debate and personal preference. Michael 
Snyder, director of the Stanford Center 
for Genomics and Personalized Medicine, 
wants to find as many variants as pos-
sible, particularly because researchers are 
still figuring out how to make sense of the 
data. “The number-one problem, whether 
it’s single-nucleotide polymorphisms or 
structural variations, is missing them,” 
he says. In a few cases, Snyder has had the 
same genome sequenced twice with differ-
ent technologies. (Illumina tends to find 
more variants but 
also has a higher 
rate of false calls, 
he says. Complete 
Genomics identi-
fies fewer variants 
but gets more cor-
rect.)

Finding variants 
depends on more 
t h a n  t h e  s h e e r 
number of reads. 
S ny d e r,  w h o  i s 
developing his own  
p i p e l i n e  c a l l e d 

experiment, sequences from closely relat-
ed subjects with and without a disease are 
examined. Variants linked with disease are 
identified and then further verified with 
focused sequencing in additional individ-
uals and biological follow-up experiments.

The approach has had dramatic suc-
cess. Articles published in just the first 
two weeks of August 2011 used exome 
sequencing to link rare mutations with 
aciduria, ataxia, polymicrogyria (a severe 
neuronal development disorder) and 
retinitis pigmentosa (an eye disease that 
leads to blindness). Sequencing experts 
are beginning to pair with clinicians in 
hopes of finding solutions to puzzling dis-
eases (Box 1). In March of 2011, research-
ers at the Medical College of Wisconsin 
described the diagnosis of a 15-month-
old boy with severe, intractable inflam-
matory bowel disease. Exome sequencing 
identified over 16,000 variants; subsequent 
analysis linked the boy’s condition to one: 
a previously uncharacterized mutation in 
a gene that inhibits normal programmed 
cell death. The discovery led to successful 
treatment with a bone marrow transplant5.

Advantages of  exome sequencing 
include lower costs, fewer informa-
tion technology infrastructure require-
ments and simplified analysis pipelines; 
it also generates data on the mutations 
that are easiest to understand and act on. 
But it is very incomplete. The approach 
may capture as many as 90% of protein-
coding genes, but it neglects the other 
approximately 99% of the genome. Even 
for protein-coding genes, exome capture 
approaches are unable to detect copy 
number variants and larger structural 
differences. For diseases rife with such 
mutations, whole-genome sequencing 
makes the most sense, says Elaine Mardis, 
co-director of technology development 
at the Genome Institute at Washington 
University in St. Louis. “From a discovery 
standpoint in cancer, we’ve resisted the 
urge to go after just the exomes.”

In the past couple of years, research-
ers studying all sorts of diseases have 
begun turning to whole genomes, says 
Radoje Drmanac, chief scientific officer 
of Complete Genomics. Not only has the 
price of sequencing come down, he says, 
but also researchers are learning how to 
make sense of noncoding portions of the 
genome. “The cost [of whole genomes] is 
still higher [than exomes],” he says. “But 
the value is higher still.”

Sequencing and 
computational 
analysis are getting 
faster and cheaper, 
but finding biological 
meaning remains 
difficult, says Elaine 
Mardis of Washington 
University in St. Louis.
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Michael Snyder of 
Stanford University is 
working on a variant-
calling pipeline that 
can easily incorporate 
new algorithms.
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tion might affect phenotype. Software 
company Omicia and scientists at the 
University of Utah recently released a 
program, variant annotation, analysis and 
search tool (called VAAST), which uses 
probabilities to identify potential disease-
causing variants from harmless counter-
parts6. When presented with variant lists 
from surprisingly few individuals, VAAST 
quickly plucked out mutations known to 
be responsible for the rare genetic disease 
Miller syndrome. In a separate analysis, 
the program identified mutations for a 
formerly unrecognized neurodegenerative 
disease linked to a gene on the X chromo-
some. Researchers say such programs can 
be useful for prioritizing variants, but reli-
ably predicting the functions of any spe-
cific variant is still far beyond a computer 
program.

Catalogs of previously discovered 
variants can also help, though existing 
databases are mainly restricted to easily 
identified variants like SNPs. Researchers 
hunting for the genes responsible for rare 
diseases, for example, discard candidates 
that are found too often in the general 
population. Those working on more com-
plex diseases can use such catalogs to help 
verify their findings.

Ultimately, though, pinning a variant to 
a function is the part of science least ame-
nable to high-throughput approaches, says 
DePristo. “You can easily generate data 
that now demands years’ worth of work to 
digest.”
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designs PCR experiments to verify the 
breakpoints in a translocation.

The gold standard, however, is Sanger 
sequencing, the slow, labor-intensive 
technique that produced the first human 
genome in the years before faster, cheaper 
next-generation sequencing techniques 
appeared. Snyder turns to this method 
even if two independent sequencing plat-
forms have identified the same variant. “If 
it’s something you care about, you need to 
Sanger validate,” he says.

In fact, as examples accumulate of 
sequencing data being used for clinical 
diagnosis, many clinicians and research-
ers are clamoring for guidelines to help 
them decide when information about vari-
ants should be acted upon by doctors or 
disclosed to individuals. Sequencing data 
routinely produces “artifactual discover-
ies,” says Duke University’s Goldstein. 
“You have to be really careful and not 
overinterpret.” Clinical review boards at 
hospital centers across the globe are strug-
gling to develop appropriate guidelines 
for assessing confidence in and acting on 
sequencing data when treating individu-
als.

Once variants are verified, patterns of 
errors can be used to improve variant-
calling pipelines, but the real value is 
interpreting what a variant means bio-
logically. “While we’re very sophisticated 
about finding mutations, we’re not very 
sophisticated in figuring out what these 
mutations mean for cell biology,” Mardis 
explains. Understanding cancer is not 
just about finding the mutations. “What’s 
really become important is an even more 
integrated analysis: gene expression, meth-
ylation status, microRNA expression and 
similar factors all have to be accounted 
for,” she says. “We’re not only looking at 
the sequence.”

Emerging computational tools can help 
researchers decide which variants to focus 
on. Complete Genomics and other provid-
ers supply tools that can extract protein-
coding and transcription factor–binding 
variants. Shareware programs such as SIFT 
and PolyPhen-2 predict how a given muta-

HUGESeq, sometimes uses different 
sequencing technologies and pipelines 
on the same genome in order to iden-
tify more variants. The lists identified 
by GATK and SAMtools can vary by as 
much as 5%, he says. His team uses mul-
tiple algorithms to comb the genome for 
duplications, deletions and other struc-
tural variants: paired-end sequencing 
finds transposons and translocations but 
works less well for large repetitive regions, 
scanning for changes in read depth (the 
density of overlapping reads within a cer-
tain region) often works well for identify-
ing copy number variants, and split reads 
(cases in which the same read is split so 
that the two parts align to different places 
in the genome) can help identify duplica-
tions and deletions. This kind of informa-
tion is essential to plan the best follow-up 
studies, he says. “Variant calling is critical 
because it leads to decision making down 
the road.”

making a list and checking it twice
In addition to producing lists of variants, 
pipelines create confidence scores, an 
estimate of whether a variant is a real or 
false call. Although current software uses 
various tricks to weed out false positives, 
it is still hard to be certain that a muta-
tion detected by software actually exists. 
“When dealing with 100 billion pieces 
of data for a given genome, there will be 
errors,” says Barber. “We need validation 
before we can rely on that data.”

The first step is to look at the relevant 
reads for red flags. The next step is con-
ducting additional experiments. “We take 
all the regions that we think are mutated, 
and we go back to the genome with a sec-
ondary method,” says Mardis. Sequencing 
RNA from transcribed genes (a technique 
called RNA-seq) can be a quick way to 
verify that the expected variants are 
there. (Initially, RNA-seq was considered 
a potential alternative to whole-genome 
sequencing, because it would reveal only 
transcribed regions of the genome. In 
practice, though, the technique has too 
much background noise.) Mardis also 
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Erratum: Sorting out sequencing data
Monya Baker
Nat. Methods 8, 799–803 (2011); corrected after print 28 October 2011.

In the version of this article initially published, a figure was incorrectly attributed. It is reprinted from reference 3. The error has been cor-
rected in the HTML and PDF versions of the article.
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