Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Stable-isotope labeling with amino acids in nematodes

Abstract

We describe an approach for accurate quantitation of global protein dynamics in Caenorhabditis elegans. We adapted stable-isotope labeling with amino acids in cell culture (SILAC) for nematodes by feeding worms a heavy lysine– and heavy arginine–labeled Escherichia coli strain and report a genetic solution to elminate the problem of arginine-to-proline conversion. Combining our approach with quantitative proteomics methods, we characterized the heat-shock response in worms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elimination of arginine-to-proline conversion using orn-1–targeted RNAi via feeding facilitates stable-isotope labeling with amino acids.
Figure 2: SILAC in nematodes, taking the analysis of the heat-shock response as an example.
Figure 3: Analysis of C. elegans heat-shock response using SILAC in nematodes.

Similar content being viewed by others

References

  1. Cox, J. & Mann, M. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Krijgsveld, J. et al. Nat. Biotechnol. 21, 927–931 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Ong, S.E. et al. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Sury, M.D., Chen, J.X. & Selbach, M. Mol. Cell Proteomics 9, 2173–2183 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G. & Ahringer, J. Genome Biol. 2, Research0002 (2001).

    CAS  PubMed  Google Scholar 

  6. Rappsilber, J., Bicho, C.C., Alves, F.D., Chen, Z.A. & Sawin, K.E. Mol. Cell Proteomics 9, 1567–1577 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Madi, A. et al. Proteomics 3, 1526–1534 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Lamond, A.I., Boisvert, F.M., Lam, Y.W. & Lamont, D. Mol. Cell Proteomics 9, 457–470 (2010).

    Article  PubMed  Google Scholar 

  9. Calixto, A., Chelur, D., Topalidou, I., Chen, X.Y. & Chalfie, M. Nat. Methods 7, 554–559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boulon, S. et al. Mol. Cell 39, 912–924 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller, J. A Short Course in Bacterial Genetics (Cold Spring Harbor Laboratory Press, 1992).

  13. Baba, T. et al. Mol. Syst. Biol. 2, 2006 0008 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Datsenko, K.A. & Wanner, B.L. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haas, W. et al. Mol. Cell Proteomics 5, 1326–1337 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Wellcome Trust (083524/Z/07/Z, 073980/Z/03/Z, 08136/Z/03/Z and 0909444/Z/09/Z) and by the EU FP7 Prospects network (HEALTH-F4-2008-201648). A.I.L. is funded as a Wellcome Trust Principal Research fellow and A.G. as a Senior Wellcome Trust Senior Research fellow. S.C. is supported by a Royal Society of Edinburgh fellowship. D.P.X. is funded as an Association for International Cancer Research fellow. We thank T. Palmer (University of Dundee) for providing the Keio library, F. Sargent for helpful discussions and F. Wheatley for her help.

Author information

Authors and Affiliations

Authors

Contributions

A.P.B. and E.P. cloned, passaged and treated all C. elegans samples. M.L. performed all protein analysis. M.L., A.P.B., A.G. and A.I.L. wrote the paper. A.P.B., R.T.H., G.B. and S.C. generated the E. coli auxotroph strains. D.P.X., A.G. and A.I.L. provided mentorship and financed the project.

Corresponding authors

Correspondence to Anton Gartner or Angus I Lamond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 2 (PDF 731 kb)

Supplementary Table 1

MaxQuant protein output for stable-isotope labeling with amino acids analysis. (XLSX 1783 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larance, M., Bailly, A., Pourkarimi, E. et al. Stable-isotope labeling with amino acids in nematodes. Nat Methods 8, 849–851 (2011). https://doi.org/10.1038/nmeth.1679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing