Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Knocking out multigene redundancies via cycles of sexual assortment and fluorescence selection

Abstract

Phenotypes that might otherwise reveal a gene's function can be obscured by genes with overlapping function. This phenomenon is best known within gene families, in which an important shared function may only be revealed by mutating all family members. Here we describe the 'green monster' technology that enables precise deletion of many genes. In this method, a population of deletion strains with each deletion marked by an inducible green fluorescent protein reporter gene, is subjected to repeated rounds of mating, meiosis and flow-cytometric enrichment. This results in the aggregation of multiple deletion loci in single cells. The green monster strategy is potentially applicable to assembling other engineered alterations in any species with sex or alternative means of allelic assortment. To test the technology, we generated a single broadly drug-sensitive strain of Saccharomyces cerevisiae bearing precise deletions of all 16 ATP-binding cassette transporters within clades associated with multidrug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the green monster process.
Figure 2: Demonstration of the green monster process.
Figure 3: Hypersensitivity of the ABC16 monster to drugs.

Similar content being viewed by others

References

  1. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  Google Scholar 

  2. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  Google Scholar 

  3. Beh, C.T., Cool, L., Phillips, J. & Rine, J. Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics 157, 1117–1140 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pruess, M. et al. The Proteome Analysis database: a tool for the in silico analysis of whole proteomes. Nucleic Acids Res. 31, 414–417 (2003).

    Article  CAS  Google Scholar 

  5. Decottignies, A. et al. ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J. Biol. Chem. 273, 12612–12622 (1998).

    Article  CAS  Google Scholar 

  6. Entwistle, R.A., Winefield, R.D., Foland, T.B., Lushington, G.H. & Himes, R.H. The paclitaxel site in tubulin probed by site-directed mutagenesis of Saccharomyces cerevisiae beta-tubulin. FEBS Lett. 582, 2467–2470 (2008).

    Article  CAS  Google Scholar 

  7. Nakamura, K. et al. Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob. Agents Chemother. 45, 3366–3374 (2001).

    Article  CAS  Google Scholar 

  8. Decottignies, A. & Goffeau, A. Complete inventory of the yeast ABC proteins. Nat. Genet. 15, 137–145 (1997).

    Article  CAS  Google Scholar 

  9. Ernst, R., Klemm, R., Schmitt, L. & Kuchler, K. Yeast ATP-binding cassette transporters: cellular cleaning pumps. Methods Enzymol. 400, 460–484 (2005).

    Article  CAS  Google Scholar 

  10. Rothstein, R.J. One-step gene disruption in yeast. Methods Enzymol. 101, 202–211 (1983).

    Article  CAS  Google Scholar 

  11. Alani, E., Cao, L. & Kleckner, N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116, 541–545 (1987).

    Article  CAS  Google Scholar 

  12. Akada, R. et al. PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23, 399–405 (2006).

    Article  CAS  Google Scholar 

  13. Davidson, J.F. & Schiestl, R.H. Mis-targeting of multiple gene disruption constructs containing hisG. Curr. Genet. 38, 188–190 (2000).

    Article  CAS  Google Scholar 

  14. Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24, 2519–2524 (1996).

    Article  CAS  Google Scholar 

  15. Delneri, D. et al. Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene 252, 127–135 (2000).

    Article  CAS  Google Scholar 

  16. Wieczorke, R. et al. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464, 123–128 (1999).

    Article  CAS  Google Scholar 

  17. Storici, F., Lewis, L.K. & Resnick, M.A. In vivo site-directed mutagenesis using oligonucleotides. Nat. Biotechnol. 19, 773–776 (2001).

    Article  CAS  Google Scholar 

  18. Wach, A., Brachat, A., Alberti-Segui, C., Rebischung, C. & Philippsen, P. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13, 1065–1075 (1997).

    Article  CAS  Google Scholar 

  19. Tong, A. & Boone, C. High-throughput strain construction and systematic synthetic lethal screening in Saccharomyces cerevisiae. in Methods in Microbiology (eds., Stansfield, I. & Stark, M.J.R.) vol. 36, 369–386 (Elsevier, 2007).

  20. Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).

    Article  CAS  Google Scholar 

  21. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  Google Scholar 

  22. Ben-Aroya, S. et al. Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol. Cell 30, 248–258 (2008).

    Article  CAS  Google Scholar 

  23. Breslow, D.K. et al. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat. Methods 5, 711–718 (2008).

    Article  CAS  Google Scholar 

  24. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  25. Kolaczkowska, A., Kolaczkowski, M., Goffeau, A. & Moye-Rowley, W.S. Compensatory activation of the multidrug transporters Pdr5p, Snq2p, and Yor1p by Pdr1p in Saccharomyces cerevisiae. FEBS Lett. 582, 977–983 (2008).

    Article  CAS  Google Scholar 

  26. St Onge, R.P. et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 39, 199–206 (2007).

    Article  CAS  Google Scholar 

  27. Rees, D.C., Johnson, E. & Lewinson, O. ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10, 218–227 (2009).

    Article  CAS  Google Scholar 

  28. Dean, M. ABC transporters, drug resistance, and cancer stem cells. J. Mammary Gland Biol. Neoplasia 14, 3–9 (2009).

    Article  Google Scholar 

  29. Jeong, H., Herskowitz, I., Kroetz, D.L. & Rine, J. Function-altering SNPs in the human multidrug transporter gene ABCB1 identified using a Saccharomyces-based assay. PLoS Genet. 3, e39 (2007).

    Article  Google Scholar 

  30. Hughes, T.R. et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nat. Genet. 25, 333–337 (2000).

    Article  CAS  Google Scholar 

  31. Brachmann, C.B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

    Article  CAS  Google Scholar 

  32. Belli, G., Gari, E., Piedrafita, L., Aldea, M. & Herrero, E. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res. 26, 942–947 (1998).

    Article  CAS  Google Scholar 

  33. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  34. Urlinger, S. et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. USA 97, 7963–7968 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants R01 HG003224 and R21 CA130266 to F.P.R. O.D.K. was supported by a National Research Service Award fellowship from the National Institutes of Health–National Human Genome Research Institute. Micrographs were generated at Nikon Imaging Center at Harvard Medical School. We are grateful for yeast strains from C. Boone (University of Toronto) and A. Goffeau (Université catholique de Louvain), and for advice and assistance from M. Al-Shawi, B.J. Andrews, C. Baisden, R. Balasubramanian, W. Bender, C. Boone, R. Brost, S. Buratowski, D. Chowdhury, G.M. Church, D. Coen, E. Craig, E. Elion, M. Fenerjian, D. Gibson, J. Glass, A. Goffeau, R. Grene, C. Hutchison, S. Iwase, M. Johnston, B. Karas, K. Kono, K. Kuchler, J. Li, D. Morgan, S. Moye-Rowley, J. Murai, S. Oliver, F. Ozbek, Y. Pan, D. Pellman, A. Ramon, J. Rine, A. Rowat, P. Silver, H. Smith, M. Springer, K. Struhl, C. Tagwerker, M. Takahashi, B. Turcotte, D. Weitz and S. Yoshida; members of the Roth Lab, especially M. Tasan, J. Mellor, J. Komisarof, J. MacKay, A. Derti and S. Komili; and members of the Dana-Farber Center for Cancer Systems Biology, especially P. Braun, A. Dricot, D. Hill, Q. Li and H. Yu.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and F.P.R. developed the green monster method and prepared the manuscript; R.P.S.O., A.H., J.L. and Y.S. measured drug sensitivity; R.M. analyzed growth curves; O.D.K. simulated the process; L.V.Z., C.N. and G.G. advised on method design; A.H.Y.T., V.M.L., V.N.G. and M.V. provided reagents and advice; W.C. and L.P. provided technical support; P.S. and Y.S. performed flow cytometry.

Corresponding authors

Correspondence to Yo Suzuki or Frederick P Roth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–13 (PDF 4210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, Y., Onge, R., Mani, R. et al. Knocking out multigene redundancies via cycles of sexual assortment and fluorescence selection. Nat Methods 8, 159–164 (2011). https://doi.org/10.1038/nmeth.1550

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1550

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing