Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A human MAP kinase interactome

Abstract

Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional properties of the MAPK network.
Figure 2: Protein subnetworks reveal known and putative MAPK scaffolds.
Figure 3: Functional modules in the core network.

Similar content being viewed by others

References

  1. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  Google Scholar 

  2. Widmann, C., Gibson, S., Jarpe, M.B. & Johnson, G.L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143–180 (1999).

    Article  CAS  Google Scholar 

  3. Kolch, W., Calder, M. & Gilbert, D. When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett. 579, 1891–1895 (2005).

    Article  CAS  Google Scholar 

  4. Johnson, G.L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912 (2002).

    Article  CAS  Google Scholar 

  5. Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6, 827–837 (2005).

    Article  CAS  Google Scholar 

  6. Johnson, S.A. & Hunter, T. Kinomics: methods for deciphering the kinome. Nat. Methods 2, 17–25 (2005).

    Article  CAS  Google Scholar 

  7. Reszka, A.A., Seger, R., Diltz, C.D., Krebs, E.G. & Fischer, E.H. Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc. Natl. Acad. Sci. USA 92, 8881–8885 (1995).

    Article  CAS  Google Scholar 

  8. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  Google Scholar 

  9. Friedman, A. & Perrimon, N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444, 230–234 (2006).

    Article  CAS  Google Scholar 

  10. Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nat. Methods 6, 83–90 (2009).

    Article  CAS  Google Scholar 

  11. Karin, M. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16483–16486 (1995).

    Article  CAS  Google Scholar 

  12. Rothe, M., Sarma, V., Dixit, V.M. & Goeddel, D.V. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science 269, 1424–1427 (1995).

    Article  CAS  Google Scholar 

  13. Whitmarsh, A.J. & Davis, R.J. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23, 481–485 (1998).

    Article  CAS  Google Scholar 

  14. Hayashi, K. & Altman, A. Filamin A is required for T cell activation mediated by protein kinase C-theta. J. Immunol. 177, 1721–1728 (2006).

    Article  CAS  Google Scholar 

  15. Hooley, R., Yu, C.Y., Symons, M. & Barber, D.L. G alpha 13 stimulates Na+-H+ exchange through distinct Cdc42-dependent and RhoA-dependent pathways. J. Biol. Chem. 271, 6152–6158 (1996).

    Article  CAS  Google Scholar 

  16. Baumgartner, M., Patel, H. & Barber, D.L. Na(+)/H(+) exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Am. J. Physiol. Cell Physiol. 287, C844–C850 (2004).

    Article  CAS  Google Scholar 

  17. Karydis, A., Jimenez-Vidal, M., Denker, S.P. & Barber, D.L. Mislocalized scaffolding by the Na-H exchanger NHE1 dominantly inhibits fibronectin production and TGF-beta activation. Mol. Biol. Cell 20, 2327–2336 (2009).

    Article  CAS  Google Scholar 

  18. Wang, D., Li, Z., Messing, E.M. & Wu, G. Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM. J. Biol. Chem. 277, 36216–36222 (2002).

    Article  CAS  Google Scholar 

  19. Kelley, B.P. et al. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA 100, 11394–11399 (2003).

    Article  CAS  Google Scholar 

  20. Cullen, P.J. et al. A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev. 18, 1695–1708 (2004).

    Article  CAS  Google Scholar 

  21. Collin, L., Schlessinger, K. & Hall, A. APC nuclear membrane association and microtubule polarity. Biol. Cell 100, 243–252 (2008).

    Article  CAS  Google Scholar 

  22. Kim, J. et al. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464, 1048–1051 (2010).

    Article  CAS  Google Scholar 

  23. Konig, R. et al. Human host factors required for influenza virus replication. Nature 463, 813–817 (2010).

    Article  Google Scholar 

  24. Konig, R. et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135, 49–60 (2008).

    Article  CAS  Google Scholar 

  25. Gunsalus, K.C. et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436, 861–865 (2005).

    Article  CAS  Google Scholar 

  26. Lunardi, A. et al. A genome-scale protein interaction profile of Drosophila p53 uncovers additional nodes of the human p53 network. Proc. Natl. Acad. Sci. USA 107, 6322–6327 (2010).

    Article  CAS  Google Scholar 

  27. LaCount, D.J. et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103–107 (2005).

    Article  CAS  Google Scholar 

  28. Qi, M. & Elion, E.A. MAP kinase pathways. J. Cell Sci. 118, 3569–3572 (2005).

    Article  CAS  Google Scholar 

  29. Bader, G.D. et al. BIND–the biomolecular interaction network database. Nucleic Acids Res. 29, 242–245 (2001).

    Article  CAS  Google Scholar 

  30. Peri, S. et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363–2371 (2003).

    Article  CAS  Google Scholar 

  31. Reguly, T. et al. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J. Biol. 5, 11 (2006).

    Article  Google Scholar 

  32. Ptacek, J. et al. Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005).

    Article  CAS  Google Scholar 

  33. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  Google Scholar 

  34. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  Google Scholar 

  35. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  Google Scholar 

  36. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  37. Chanda, S.K. et al. Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc. Natl. Acad. Sci. USA 100, 12153–12158 (2003).

    Article  CAS  Google Scholar 

  38. Konig, R. et al. A probability-based approach for the analysis of large-scale RNAi screens. Nat. Methods 4, 847–849 (2007).

    Article  Google Scholar 

  39. Denker, S.P., Huang, D.C., Orlowski, J., Furthmayr, H. & Barber, D.L. Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol. Cell 6, 1425–1436 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Kelley, S. Suthram and G. Warner for assistance on various aspects of this work. This work was supported by the US National Institutes of Health (R01-GM070743, R01-GM47413 and P30-MH062261) and Unilever PLC.

Author information

Authors and Affiliations

Authors

Contributions

S.B., R.B., S.S. and T.I. conceived the study; C.-y.C., J.S., S.W., R.B., C.K. and C.H.M. performed the experiments; S.B., M.G. and M.S. analyzed the data; S.B., T.I., S.S., D.L.B. and S.K.C. wrote the paper and guided the study.

Corresponding authors

Correspondence to Sudhir Sahasrabudhe or Trey Ideker.

Ethics declarations

Competing interests

R.B. is a shareholder of Prolexys Pharmaceuticals, Inc. S.S. is an employee, scientific founder and shareholder of Prolexys Pharmaceuticals Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 3,5,7 (PDF 534 kb)

Supplementary Table 1

List of binary Y2H interactions including annotations. (XLS 457 kb)

Supplementary Table 2

Core high-confidence MAPK Y2H interactions. (XLS 96 kb)

Supplementary Table 4

List of 134 triplets containing two or more interactions from the core MAPK Y2H network. (XLS 42 kb)

Supplementary Table 6

List of human protein-protein interactions used as a reference set and for module finding. (XLS 1784 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, S., Chiang, Cy., Srivastava, J. et al. A human MAP kinase interactome. Nat Methods 7, 801–805 (2010). https://doi.org/10.1038/nmeth.1506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing