Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

'Edgetic' perturbation of a C. elegans BCL2 ortholog

An Erratum to this article was published on 16 November 2009

This article has been updated

Abstract

Genes and gene products do not function in isolation but within highly interconnected 'interactome' networks, modeled as graphs of nodes and edges representing macromolecules and interactions between them, respectively. We propose to investigate genotype-phenotype associations by methodical use of alleles that lack single interactions, while retaining all others, in contrast to genetic approaches designed to eliminate gene products completely. We describe an integrated strategy based on the reverse yeast two-hybrid system to isolate and characterize such edge-specific, or 'edgetic', alleles. We established a proof of concept with CED-9, a Caenorhabditis elegans BCL2 ortholog. Using ced-9 edgetic alleles, we uncovered a new potential functional link between apoptosis and a centrosomal protein. This approach is amenable to higher throughput and is particularly applicable to interactome network analysis in organisms for which transgenesis is straightforward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations of genotype-phenotype associations.
Figure 2: Isolation of ced-9 alleles insensitive to EGL-1.
Figure 3: Outline of the edgetic strategy.
Figure 4: Edgetic and non-edgetic residues in CED-9 and CED-9/CED-4 structures.
Figure 5: Positioning edgetic residues in CED-9 structures.
Figure 6: Node removal and edgetic perturbation in vivo.

Similar content being viewed by others

Change history

  • 16 November 2009

    In the version of this article initially published, the schematic in Figure 5a was misaligned. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Barabási, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  PubMed  Google Scholar 

  2. Vidal, M. Interactome modeling. FEBS Lett. 579, 1834–1838 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Shih, H.M. et al. A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. Proc. Natl. Acad. Sci. USA 93, 13896–13901 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leanna, C.A. & Hannink, M. The reverse two-hybrid system: a genetic scheme for selection against specific protein/protein interactions. Nucleic Acids Res. 24, 3341–3347 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vidal, M., Braun, P., Chen, E., Boeke, J.D. & Harlow, E. Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc. Natl. Acad. Sci. USA 93, 10321–10326 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vidal, M., Brachmann, R.K., Fattaey, A., Harlow, E. & Boeke, J.D. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl. Acad. Sci. USA 93, 10315–10320 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Endoh, H. et al. Integrated version of reverse two-hybrid system for the postproteomic era. Methods Enzymol. 350, 525–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Gray, P.N., Busser, K.J. & Chappell, T.G. A novel approach for generating full-length, high coverage allele libraries for the analysis of protein interactions. Mol. Cell. Proteomics 6, 514–526 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Kritikou, E.A. et al. C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival. Genes Dev. 20, 2279–2292 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Inouye, C., Dhillon, N., Durfee, T., Zambryski, P.C. & Thorner, J. Mutational analysis of STE5 in the yeast Saccharomyces cerevisiae: application of a differential interaction trap assay for examining protein-protein interactions. Genetics 147, 479–492 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Serebriiskii, I., Khazak, V. & Golemis, E.A. A two-hybrid dual bait system to discriminate specificity of protein interactions. J. Biol. Chem. 274, 17080–17087 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Hengartner, M.O., Ellis, R.E. & Horvitz, H.R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, X., Chang, H.Y. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355–1357 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Conradt, B. & Horvitz, H.R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. del Peso, L., Gonzalez, V.M. & Nunez, G. Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation. J. Biol. Chem. 273, 33495–33500 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Yan, N. et al. Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 437, 831–837 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hengartner, M.O. & Horvitz, H.R. Activation of C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature 369, 318–320 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Yan, N. et al. Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol. Cell 15, 999–1006 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Woo, J.S. et al. Unique structural features of a BCL-2 family protein CED-9 and biophysical characterization of CED-9/EGL-1 interactions. Cell Death Differ. 10, 1310–1319 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Walhout, A.J. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spector, M.S., Desnoyers, S., Hoeppner, D.J. & Hengartner, M.O. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385, 653–656 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Hamill, D.R., Severson, A.F., Carter, J.C. & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Boeke, J.D., LaCroute, F. & Fink, G.R. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345–346 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Lettre, G. et al. Genome-wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans. Cell Death Differ. 11, 1198–1203 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Ellis, H.M. & Horvitz, H.R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Boag, P.R., Nakamura, A. & Blackwell, T.K. A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in C. elegans. Development 132, 4975–4986 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Jeffery, C.J. Moonlighting proteins–an update. Mol. Biosyst. 5, 345–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Zhong, Q. et al. Edgetic perturbation models of human genetic disorders. Mol. Syst. Biol. (in the press).

  31. Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nat. Methods 6, 83–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Walhout, A.J. & Vidal, M. High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods 24, 297–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Walhout, A.J. et al. GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 328, 575–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Reboul, J. et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat. Genet. 34, 35–41 (2003).

    Article  PubMed  Google Scholar 

  35. Xu, L. et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Lins, L., Thomas, A. & Brasseur, R. Analysis of accessible surface of residues in proteins. Protein Sci. 12, 1406–1417 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hofmann, E.R. et al. Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis. Curr. Biol. 12, 1908–1918 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Rual, J.F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Lehner, B., Tischler, J. & Fraser, A.G. RNAi screens in Caenorhabditis elegans in a 96-well liquid format and their application to the systematic identification of genetic interactions. Nat. Protocols 1, 1617–1620 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Gumienny, T.L., Lambie, E., Hartwieg, E., Horvitz, H.R. & Hengartner, M.O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Stan Korsmeyer. We thank the members of the Vidal Lab and of the Dana-Farber Cancer Institute CCSB and particularly A.-R. Carvunis for helpful discussions. This work was supported by US National Institutes of Health (NIH) grants R01 HG001715 from the National Human Genomics Research Institute (NHGRI) and National Institute of General Medical Sciences (NIGMS) and grants R33 CA105405, R33 CA132073 and R21/R33 CA081658 from the US National Cancer Institute (NCI) (M.V.), U01 CA105423 from the NCI (principal investigator, S. Orkin; project leader, M.V.) and by Institute Sponsored Research funds from the Dana-Farber Cancer Institute Strategic Initiative awarded to CCSB. M.D. and G.L. were supported by a 'Research Fellow' fellowship from the Fonds de la Recherche Scientifique (FRS-FNRS, French Community of Belgium). B.C. was supported by the Belgian Program on Interuniversity Attraction Poles initiated by the Federal Office for Scientific, Technical and Cultural Affairs (IAP P6/19 PROFUSA). S.M. was supported by an NIH National Research Service Award training grant fellowship (T32CA09361). P.-O.V. was supported by a European Molecular Biology Organization long-term fellowship 61-2002. Support was provided by the Leukemia Research Foundation to M.B. M.V. and R.B. thank the 'Fonds de la Recherche Scientifique (FRS-FNRS, French Community of Belgium)'. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NCI, NHGRI, NIGMS or the NIH.

Author information

Authors and Affiliations

Authors

Contributions

M.D., B.C., S.M., P.-O.V., M.A.Y., Q.Z., R.B., J.V., M.B. and M.V. conceived the experiments and analyses. S.M. and P.-O.V. generated the ced-9 mutant library and performed Y2H screens and R-Y2H selections. M.D. and P.-O.V. cloned the alleles. P.-O.V. and M.D. performed the co-APs. M.D. and G.L. developed and implemented the modified Y2H assay. B.C. performed the structural analyses. B.C. and M.A.Y. performed the statistical analyses. N.S. generated the transgenic worms under the supervision of S.M. and M.B. S.M. performed survival and apoptosis challenge experiments. M.D. and V.R. performed the mutant alleles stability experiment. M.D., B.C., S.M., P.-O.V., M.E.C. and M.V. wrote the manuscript. All authors discussed the results. D.E.H. and M.V. conceived and co-directed the project.

Corresponding author

Correspondence to Marc Vidal.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–5 and Supplementary Data 1–4 (PDF 3939 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreze, M., Charloteaux, B., Milstein, S. et al. 'Edgetic' perturbation of a C. elegans BCL2 ortholog. Nat Methods 6, 843–849 (2009). https://doi.org/10.1038/nmeth.1394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing