Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The twin spot generator for differential Drosophila lineage analysis

Abstract

In Drosophila melanogaster, widely used mitotic recombination–based strategies generate mosaic flies with positive readout for only one daughter cell after division. To differentially label both daughter cells, we developed the twin spot generator (TSG) technique, which through mitotic recombination generates green and red twin spots that are detectable after the first cell division as single cells. We propose wide applications of TSG to lineage and genetic mosaic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TSG strategy.
Figure 2: Red and green twin spots, and yellow clones, generated after mitotic recombination at 82F7.
Figure 3: Separation of clones in developing leg imaginal discs.

Similar content being viewed by others

References

  1. Lee, T. & Luo, L. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  2. Lee, T. & Luo, L. Trends Neurosci. 24, 251–254 (2001).

    Article  CAS  Google Scholar 

  3. de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L.A. Cell 117, 107–116 (2004).

    Article  CAS  Google Scholar 

  4. Spradling, A.C. & Rubin, G.M. Science 218, 341–347 (1982).

    Article  CAS  Google Scholar 

  5. Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D. & Luo, L. Cell 121, 479–492 (2005).

    Article  CAS  Google Scholar 

  6. Golic, K.G. Science 252, 958–961 (1991).

    Article  CAS  Google Scholar 

  7. Stern, C. Genetics 21, 625–730 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cormack, B.P., Valdivia, R.H. & Falkow, S. Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  9. Campbell, R.E. et al. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  10. Harrison, D.A. & Perrimon, N. Curr. Biol. 3, 424–433 (1993).

    Article  CAS  Google Scholar 

  11. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Genetics 166, 1775–1782 (2004).

    Article  CAS  Google Scholar 

  12. Bateman, J.R., Lee, A.M. & Wu, C.T. Genetics 173, 769–777 (2006).

    Article  CAS  Google Scholar 

  13. McClure, K.D. & Schubiger, G. Development 132, 5033–5042 (2005).

    Article  CAS  Google Scholar 

  14. Bateman, J.R. & Wu, C.T. Genetics 180, 1763–1766 (2008).

    Article  CAS  Google Scholar 

  15. Rubin, G.M. & Spradling, A.C. Science 218, 348–353 (1982).

    Article  CAS  Google Scholar 

  16. Spradling, A.C. & Rubin, G.M. Science 218, 341–347 (1982).

    Article  CAS  Google Scholar 

  17. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  Google Scholar 

  18. Chou, T.B. & Perrimon, N. Genetics 144, 1673–1679 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Zirin and M. Packard for confocal expertise, P. Bradley for molecular biology advice, F. Karch (University of Geneva) for providing flies carrying integrase and T.S. Griffin for contributing the technique acronym. This work was supported by grants from the US National Institutes of Health (1 RO1 GM61936, C.-t.W.; RO1 GM058282, G.S.; and RO1 GM084947, N.P.) and a Ruth L. Kirschstein National Research Service award (1 F32 GM67460, J.R.B.); the US National Science Foundation (A.M.H.); the Swiss National Science Foundation (PBBE33-121069, M.B.) and the Leukemia and Lymphoma Society (C.B.).

Author information

Authors and Affiliations

Authors

Contributions

R.G., design and execution of constructs, vectors and first-round proof-of-principle experiments, verification of TSG lines and writing of manuscipt. A.S., M.B. and G.S., clonal separation experiments and description in manuscript. R.B., design and generation of TSG transgenic fly lines and modification of target genomic lines. A.d.V.R., validation of TSG in fly brain. C.B., molecular biology expertise and tissue culture strategy. A.M.H., validation of TSG in imaginal discs. J.R.B., design and generation of target genomic lines. C.V., fly injections. E.H., tissue culture assays. D.G., acquisition and analysis of confocal images. C.D., G.S., C.-t.W. and N.P. co-directed the project. C.-t.W. suggested and funded the RMCE approach. N.P. provided US laboratory facilities and materials and conceived the TSG strategy.

Corresponding authors

Correspondence to Ruth Griffin, C-ting Wu or Norbert Perrimon.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–5 and Supplementary Note (PDF 3410 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffin, R., Sustar, A., Bonvin, M. et al. The twin spot generator for differential Drosophila lineage analysis. Nat Methods 6, 600–602 (2009). https://doi.org/10.1038/nmeth.1349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1349

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing