Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon

Abstract

Induced pluripotent stem cells (iPSCs) have been generated from somatic cells by transgenic expression of Oct4 (Pou5f1), Sox2, Klf4 and Myc. A major difficulty in the application of this technology for regenerative medicine, however, is the delivery of reprogramming factors. Whereas retroviral transduction increases the risk of tumorigenicity, transient expression methods have considerably lower reprogramming efficiencies. Here we describe an efficient piggyBac transposon–based approach to generate integration-free iPSCs. Transposons carrying 2A peptide–linked reprogramming factors induced reprogramming of mouse embryonic fibroblasts with equivalent efficiencies to retroviral transduction. We removed transposons from these primary iPSCs by re-expressing transposase. Transgene-free iPSCs could be identified by negative selection. piggyBac excised without a footprint, leaving the iPSC genome without any genetic alteration. iPSCs fulfilled all criteria of pluripotency, such as pluripotency gene expression, teratoma formation and contribution to chimeras. piggyBac transposon–based reprogramming may be used to generate therapeutically applicable iPSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of piggyBac transposon–mediated reprogramming vectors.
Figure 2: Generation of primary iPSCs using piggyBac transposons.
Figure 3: Transposon removal from the established iPSC lines.
Figure 4: Characterization of integration-free iPSCs.
Figure 5: Contribution of integration-free iPSCs to somatic tissue and germ line in chimeras.
Figure 6: Schemes to generate transgene-free iPSCs.

Similar content being viewed by others

References

  1. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49 (2007).

    Article  CAS  Google Scholar 

  2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  3. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  4. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  5. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  Google Scholar 

  6. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  Google Scholar 

  7. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  Google Scholar 

  8. Foster, K.W. et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene 24, 1491–1500 (2005).

    Article  CAS  Google Scholar 

  9. Nair, V. Retrovirus-induced oncogenesis and safety of retroviral vectors. Curr. Opin. Mol. Ther. 10, 431–438 (2008).

    CAS  PubMed  Google Scholar 

  10. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  Google Scholar 

  11. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    Article  CAS  Google Scholar 

  12. Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  Google Scholar 

  13. Cary, L.C. et al. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172, 156–169 (1989).

    Article  CAS  Google Scholar 

  14. Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122, 473–483 (2005).

    Article  CAS  Google Scholar 

  15. Fraser, M.J., Ciszczon, T., Elick, T. & Bauser, C. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 5, 141–151 (1996).

    Article  CAS  Google Scholar 

  16. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    Article  CAS  Google Scholar 

  17. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 26, 1269–1275 (2008).

    Article  CAS  Google Scholar 

  18. Blelloch, R., Venere, M., Yen, J. & Ramalho-Santos, M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–247 (2007).

    Article  CAS  Google Scholar 

  19. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26, 795–797 (2008).

    Article  CAS  Google Scholar 

  20. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699–702 (2008).

    Article  CAS  Google Scholar 

  21. Wang, W. et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 105, 9290–9295 (2008).

    Article  CAS  Google Scholar 

  22. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159 (2008).

    Article  CAS  Google Scholar 

  23. Hockemeyer, D. et al. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3, 346–353 (2008).

    Article  CAS  Google Scholar 

  24. Stadtfeld, M., Maherali, N., Breault, D.T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008).

    Article  CAS  Google Scholar 

  25. Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat. Biotechnol. 26, 916–924 (2008).

    Article  CAS  Google Scholar 

  26. Mitra, R., Fain-Thornton, J. & Craig, N.L. piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J. 27, 1097–1109 (2008).

    Article  CAS  Google Scholar 

  27. Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).

    Article  CAS  Google Scholar 

  28. Carey, B.W. et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc. Natl. Acad. Sci. USA 106, 157–162 (2009).

    Article  CAS  Google Scholar 

  29. Zhao, Y. et al. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3, 475–479 (2008).

    Article  CAS  Google Scholar 

  30. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).

    Article  CAS  Google Scholar 

  31. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature advance online publication 1 March 2009 (doi:10.1038/nature07864).

    Article  CAS  Google Scholar 

  32. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature advance online publication 1 March 2009 (doi:10.1038/nature07863).

    Article  CAS  Google Scholar 

  33. Niwa, H., Masui, S., Chambers, I., Smith, A.G. & Miyazaki, J. Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol. Cell. Biol. 22, 1526–1536 (2002).

    Article  CAS  Google Scholar 

  34. Cadinanos, J. & Bradley, A. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res. 35, e87 (2007).

    Article  Google Scholar 

  35. Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    Article  CAS  Google Scholar 

  36. Devon, R.S., Porteous, D.J. & Brookes, A.J. Splinkerettes—improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res. 23, 1644–1645 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Banerjee for karyotype analysis, M. Li, C. Kokubu and K. Horie for help, suggestions and comments, and members of Team 82 and the Research Support Facility of the Wellcome Trust Sanger Institute for their support. K.Y. is funded by postdoctoral fellowship of Japan Society for the Promotion of Science. This work is supported by the Wellcome Trust (WT077187).

Author information

Authors and Affiliations

Authors

Contributions

K.Y. designed and performed experiments, analyzed data and wrote the paper. R.R. and J.T. performed experiments and assisted in writing the paper. A.B. designed experiments, interpreted and assisted in writing the paper.

Corresponding author

Correspondence to Allan Bradley.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–2 (PDF 1032 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yusa, K., Rad, R., Takeda, J. et al. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6, 363–369 (2009). https://doi.org/10.1038/nmeth.1323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing