Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Colloid-guided assembly of oriented 3D neuronal networks

Abstract

A central challenge in neuroscience is to understand the formation and function of three-dimensional (3D) neuronal networks. In vitro studies have been mainly limited to measurements of small numbers of neurons connected in two dimensions. Here we demonstrate the use of colloids as moveable supports for neuronal growth, maturation, transfection and manipulation, where the colloids serve as guides for the assembly of controlled 3D, millimeter-sized neuronal networks. Process growth can be guided into layered connectivity with a density similar to what is found in vivo. The colloidal superstructures are optically transparent, enabling remote stimulation and recording of neuronal activity using layer-specific expression of light-activated channels and indicator dyes. The modular approach toward in vitro circuit construction provides a stepping stone for applications ranging from basic neuroscience to neuron-based screening of targeted drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth and manipulation of neurons growing on silica beads.
Figure 2: Three-dimensional self-assembly of a neuronal network.
Figure 3: Guidance of interlayer connections.
Figure 4: Functional synaptic connectivity between neuronal layers.

Similar content being viewed by others

References

  1. Beaulieu, C. & Colonnier, M. The number of neurons in the different laminae of the binocular and monocular regions of area 17 in the cat, Canada. J. Comp. Neurol. 217, 337–344 (1983).

    Article  CAS  Google Scholar 

  2. Shepherd, G.M. Microcircuits in the nervous system. Sci. Am. 238, 93–103 (1978).

    Article  CAS  Google Scholar 

  3. Shepherd, G.M. The synaptic organization of the brain. (Oxford University Press, New York, 1979).

    Google Scholar 

  4. Changeux, J.P. & Dehaene, S. Neuronal models of cognitive functions. Cognition 33, 63–109 (1989).

    Article  CAS  Google Scholar 

  5. Golomb, D. & Hansel, D. The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural Comput. 12, 1095–1139 (2000).

    Article  CAS  Google Scholar 

  6. Ikeda, S.R. Expression of G-protein signaling components in adult mammalian neurons by microinjection. Methods Mol. Biol. 259, 167–181 (2004).

    CAS  PubMed  Google Scholar 

  7. Miyoshi, H., Blomer, U., Takahashi, M., Gage, F.H. & Verma, I.M. Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150–8157 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wickersham, I.R., Finke, S., Conzelmann, K.K. & Callaway, E.M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods 4, 47–49 (2007).

    Article  CAS  Google Scholar 

  9. Wickersham, I.R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  Google Scholar 

  10. Lo, Y.J. & Poo, M.M. Heterosynaptic suppression of developing neuromuscular synapses in culture. J. Neurosci. 14, 4684–4693 (1994).

    Article  CAS  Google Scholar 

  11. Wyart, C. et al. Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces. J. Neurosci. Methods 117, 123–131 (2002).

    Article  Google Scholar 

  12. Chiappalone, M. et al. Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications. Biosens. Bioelectron. 18, 627–634 (2003).

    Article  CAS  Google Scholar 

  13. Hofmann, F. & Bading, H. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration. J. Physiol. (Paris) 99, 125–132 (2006).

    Article  CAS  Google Scholar 

  14. Morin, F. et al. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Biosens. Bioelectron. 21, 1093–1100 (2006).

    Article  CAS  Google Scholar 

  15. Xiang, G. et al. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro. Biosens. Bioelectron. 22, 2478–2484 (2007).

    Article  CAS  Google Scholar 

  16. Jun, S.B. et al. Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays. J. Neurosci. Methods 160, 317–326 (2007).

    Article  CAS  Google Scholar 

  17. Lee, J., Cuddihy, M.J. & Kotov, N.A. Three-dimensional cell culture matrices: state of the art. Tissue Eng. Part B: Reviews 14, 61–86 (2008).

    Article  CAS  Google Scholar 

  18. Schmidt, C.E. & Leach, J.B. Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5, 293–347 (2003).

    Article  CAS  Google Scholar 

  19. Huang, Y.C. & Huang, Y.Y. Biomaterials and strategies for nerve regeneration. Artif. Organs 30, 514–522 (2006).

    Article  Google Scholar 

  20. Shany, B., Vago, R. & Baranes, D. Growth of primary hippocampal neuronal tissue on an aragonite crystalline biomatrix. Tissue Eng. 11, 585–596 (2005).

    Article  Google Scholar 

  21. Baranes, D. et al. Interconnected network of ganglion-like neural cell spheres formed on hydrozoan skeleton. Tissue Eng. 13, 473 (2007).

    Article  CAS  Google Scholar 

  22. Ma, W. et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp. Neurol. 190, 276–288 (2004).

    Article  CAS  Google Scholar 

  23. Polleux, F. & Ghosh, A. The slice overlay assay: a versatile tool to study the influence of extracellular signals on neuronal development. Sci. STKE 136, l9 (2002).

    Google Scholar 

  24. Pusey, P.N. & Vanmegen, W. Phase-behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    Article  CAS  Google Scholar 

  25. van Blaaderen, A., Ruel, R. & Wiltzius, P. Template-directed colloidal crystallization. Nature 385, 321–324 (1997).

    Article  CAS  Google Scholar 

  26. Letourneau, P.C. Cell-to-substratum adhesion and guidance of axonal elongation. Dev. Biol. 44, 92–101 (1975).

    Article  CAS  Google Scholar 

  27. Letourneau, P.C. Possible roles for cell-to-substratum adhesion in neuronal morphogenesis. Dev. Biol. 44, 77–91 (1975).

    Article  CAS  Google Scholar 

  28. Abeles, M. Corticonics: Neural Circuits of the Cerebral Cortex. (Cambridge University Press, New York, 1991).

    Book  Google Scholar 

  29. Song, H.J., Ming, G.L. & Poo, M.M. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997).

    Article  CAS  Google Scholar 

  30. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    Article  CAS  Google Scholar 

  31. Gorostiza, P. et al. Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc. Natl. Acad. Sci. USA 104, 10865–10870 (2007).

    Article  CAS  Google Scholar 

  32. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Callaway (Salk Institute) for the lentiviral DNA constructs (HIV-CS-CG-SynapsinPr-GFP), R. Tsien (University of California, San Diego) for the pRSETB_tdTomato plasmid, K. Kolstad and J. Flannery (University of California, Berkeley) for providing us with the AAV-SynapsinPr-LiGluR virus and for assisting in the preparation of the lentivirus, the Molecular Imaging Center and H. Aaron for help with the confocal microscopy, and M.M. Poo, M. Shelly, M.B. Forstner and S. Kohout for helpful discussions and comments. This work was supported by the US National Institutes of Health Nanomedicine Development Center in Optical Control of Biological Function (PN2 EY1018241). C.W. was supported by a Marie Curie Outgoing International Fellowship funded through Laboratoire de Neurosciences et Systèmes Sensoriels, Centre National de la Recherche Scientifique, Uniteé Mixte de Recherche 5020.

Author information

Authors and Affiliations

Authors

Contributions

S.P. designed and executed experiments; C.W. contributed to the light-gated ion channel experiments; and E.Y.I. supervised the project.

Corresponding author

Correspondence to Ehud Y Isacoff.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 795 kb)

Supplementary Video 1

Animation of 3D reconstruction of macroscopic 3D neuronal network. Animation showing confocal z-series imaging presented in Figure 2. (MOV 749 kb)

Supplementary Video 2

Animation of 3D reconstruction of neuronal processes on the guiding layer. Reconstruction of axons and dendrites on the 45 μm cAMP beads after 7 days using the filament tracer of the Imaris software (Bitplane Inc.). (MOV 2438 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pautot, S., Wyart, C. & Isacoff, E. Colloid-guided assembly of oriented 3D neuronal networks. Nat Methods 5, 735–740 (2008). https://doi.org/10.1038/nmeth.1236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing