Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlled growth of tetrapod-branched inorganic nanocrystals

Abstract

Nanoscale materials are currently being exploited as active components in a wide range of technological applications in various fields, such as composite materials1,2, chemical sensing3, biomedicine4,5,6, optoelectronics7,8,9 and nanoelectronics10,11,12. Colloidal nanocrystals are promising candidates in these fields, due to their ease of fabrication and processibility. Even more applications and new functional materials might emerge if nanocrystals could be synthesized in shapes of higher complexity than the ones produced by current methods (spheres, rods, discs)13,14,15,16,17,18,19. Here, we demonstrate that polytypism, or the existence of two or more crystal structures in different domains of the same crystal, coupled with the manipulation of surface energy at the nanoscale, can be exploited to produce branched inorganic nanostructures controllably. For the case of CdTe, we designed a high yield, reproducible synthesis of soluble, tetrapod-shaped nanocrystals through which we can independently control the width and length of the four arms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed model of a CdTe tetrapod.
Figure 2: Electron microscopy images of CdTe tetrapods.
Figure 3: Time-dependent shape evolution of CdTe tetrapods.
Figure 4: Influence of the shape of CdTe tetrapods on optical absorption spectra.

Similar content being viewed by others

References

  1. Morris, C.A., Anderson, M.L., Stroud, R.M., Merzbacher, C.I. & Rolison, D.R. Silica sol as a nanoglue: Flexible synthesis of composite aerogels. Science 284, 622–624 ( 1999).

    Article  CAS  Google Scholar 

  2. Caruso, F. Hollow capsule processing through colloidal templating and self-assembly. Chem. Europ. J. 6, 413–419 ( 2000).

    Article  CAS  Google Scholar 

  3. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 ( 2000).

    Article  CAS  Google Scholar 

  4. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 ( 1998).

    Article  CAS  Google Scholar 

  5. Chan, W.C.W. & Nie, S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 ( 1998).

    Article  CAS  Google Scholar 

  6. Taton, T.A., Mirkin, C.A. & Letsinger, R.L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 ( 2000).

    Article  CAS  Google Scholar 

  7. Colvin, V.L., Schlamp, M.C. & Alivisatos, A.P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 ( 1994).

    Article  CAS  Google Scholar 

  8. Huynh, W.U., Dittmer, J.J. & Alivisatos, A.P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 ( 2002).

    Article  CAS  Google Scholar 

  9. Klimov, V.I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 ( 2000).

    Article  CAS  Google Scholar 

  10. Fuhrer, M.S. et al. Crossed nanotube junctions. Science 288, 494–497 ( 2000).

    Article  CAS  Google Scholar 

  11. Duan, X.F., Huang, Y., Cui, Y., Wang, J.F. & Lieber, C.M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 ( 2001).

    Article  CAS  Google Scholar 

  12. Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D. & Lieber, C.M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 ( 2002).

    Article  CAS  Google Scholar 

  13. Murray, C.B., Norris, D.J. & Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 ( 1993).

    Article  CAS  Google Scholar 

  14. Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A. & El-Sayed, M.A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1926 ( 1996).

    Article  CAS  Google Scholar 

  15. Yu, Y.Y., Chang, S., Lee, C.J. & Wang, C.R.C. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661–6664 ( 1997).

    Article  CAS  Google Scholar 

  16. Peng, X.G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 ( 2000).

    Article  CAS  Google Scholar 

  17. Jun, Y.W., Lee, S.M., Kang, N.J. & Cheon, J. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J. Am. Chem. Soc. 123, 5150–5151 ( 2001).

    Article  CAS  Google Scholar 

  18. Shevchenko, E. et al. Colloidal crystals of monodisperse FePt nanoparticles grown by a three-layer technique of controlled oversaturation. Adv. Mater. 14, 287–290 ( 2002).

    Article  CAS  Google Scholar 

  19. Ni, Y.H., Ge, X.W., Zhang, Z.C. & Ye, Q. Fabrication and characterization of the plate-shaped gamma-Fe2O3 nanocrystals. Chem. Mater. 14, 1048–1052 ( 2002).

    Article  CAS  Google Scholar 

  20. Park, C.H., Cheong, B.H., Lee, K.H. & Chang, K.J. Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys. Rev. B 49, 4485–4493 ( 1994).

    Article  CAS  Google Scholar 

  21. Yeh, C.Y., Lu, Z.W., Froyen, S. & Zunger, A. Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 ( 1992).

    Article  CAS  Google Scholar 

  22. Ito, T. Simple criterion for wurtzite-zinc-blende polytypism in semiconductors. Jpn J. Appl. Phys. Part 2 37, L1217–L1220 ( 1998).

    Article  CAS  Google Scholar 

  23. Mason, B.J. Snow crystals, natural and man-made. Contemp. Phys. 33, 227–243 ( 1992).

    Article  CAS  Google Scholar 

  24. Jun, Y.W., Jung, Y.Y. & Cheon, J. Architectural control of magnetic semiconductor nanocrystals. J. Am. Chem. Soc. 124, 615–619 ( 2002).

    Article  CAS  Google Scholar 

  25. Chen, M. et al. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. J. Mater. Chem. 12, 748–753 ( 2002).

    Article  CAS  Google Scholar 

  26. Dai, Y., Zhang, Y., Li, Q.K. & Nan, C.W. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem. Phys. Lett. 358, 83–86 ( 2002).

    Article  CAS  Google Scholar 

  27. Manna, L., Scher, E.C. & Alivisatos, A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 ( 2000).

    Article  CAS  Google Scholar 

  28. Bandaranayake, R.J., Wen, G.W., Lin, J.Y., Jiang, H.X. & Sorensen, C.M. Structural phase-behavior in II-VI semiconductor nanoparticles. Appl. Phys. Lett. 67, 831–833 ( 1995).

    Article  CAS  Google Scholar 

  29. Peng, Z.A. & Peng, X.G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 ( 2001).

    Article  CAS  Google Scholar 

  30. Peng, Z.A. & Peng, X.G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 123, 1389–1395 ( 2001).

    Article  CAS  Google Scholar 

  31. Peng, Z.A. & Peng, X.G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 ( 2002).

    Article  CAS  Google Scholar 

  32. Li, L.S., Hu, J.T., Yang, W.D. & Alivisatos, A.P. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 1, 349–351 ( 2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract No. DE-AC03-76SF00098 and by Grant No. 066995 through the University of Southern California, under prime sponsor DOD Advanced Research Projects Agency. D.S.M. gratefully acknowledges fellowship support from the US department of Defense. We would like to thank R. Zalpuri and G. Vrdoljak at the UC Berkeley Electron Microscope Lab for their assistance and the use of their TEM. We thank J. W. Jun and M. F. Casula for beneficial discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Paul Alivisatos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manna, L., Milliron, D., Meisel, A. et al. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater 2, 382–385 (2003). https://doi.org/10.1038/nmat902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing