Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1–x:(MgO)x nanocomposite films

A Corrigendum to this article was published on 01 January 2005

Abstract

'Colossal magnetoresistance' in perovskite manganites such as La0.7Ca0.3MnO3 (LCMO), is caused by the interplay of ferro-paramagnetic, metal–insulator and structural phase transitions. Moreover, different electronic phases can coexist on a very fine scale resulting in percolative electron transport. Here we report on (LCMO)1–x:(MgO)x (0 < x ≤ 0.8) epitaxial nano-composite films in which the structure and magnetotransport properties of the manganite nanoclusters can be tuned by the tensile stress originating from the MgO second phase. With increasing x, the lattice of LCMO was found to expand, yielding a bulk tensile strain. The largest colossal magnetoresistance of 105% was observed at the percolation threshold in the conductivity at xc ≈ 0.3, which is coupled to a structural phase transition from orthorhombic (0 < x ≤ 0.1) to rhombohedral R3̄c structure (0.33 ≤ x ≤ 0.8). An increase of the Curie temperature for the R3̄c phase was observed. These results may provide a general method for controlling the magnetotransport properties of manganite-based composite films by appropriate choice of the second phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission electron microscopy (TEM) observations of a nano-composite (LCMO)0.5:(MgO)0.5 film grown by a metal-organic aerosol deposition technique on MgO(100) substrate.
Figure 2: X-ray diffraction (XRD) analysis of composite (LCMO)1–x:(MgO)x films.
Figure 3: The empirical dependence of the crystal lattice parameters of the LCMO primary phase on the concentration of the MgO second phase.
Figure 4: Cross-section selected-area electron-diffraction patterns of the composite films with x = 0 and x = 0.33.
Figure 5: Magnetotransport in composite (LCMO)1–x:(MgO)x films.
Figure 6: The empirical phase diagram of the LCMO phase as a function of the concentration of MgO second phase.

Similar content being viewed by others

References

  1. von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L. & Samwer, K. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993).

    Article  CAS  Google Scholar 

  2. Chahara, K., Ohno, T., Kasai, M. & Kozono, Y. Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett. 63, 1990–1992 (1993).

    Article  CAS  Google Scholar 

  3. Hwang, H.Y., Cheong, S.-W., Radaelli, P.G., Marezio, M. & Batlogg, B. Lattice effects on the magnetoresistance in doped LaMnO3 . Phys. Rev. Lett. 75, 914–917 (1995).

    Article  CAS  Google Scholar 

  4. Campbell, A.J., Balakrishnan, G., Lees, M.R., Paul, D.McK. & McIntyre, G.J. Single-crystal neutron-diffraction study of a structural phase transition induced by a magnetic field in La1-xSrxMnO3 . Phys. Rev. B 55, R8622–R8625 (1998).

    Article  Google Scholar 

  5. Okimoto, Y., Tomioka, Y., Onose, Y., Otsuka, Y. & Tokura, Y. Charge ordering and disordering transitions in Pr1-xCaxMnO3 (x=0.4) as investigated by optical spectroscopy. Phys. Rev. B 57, R9377–R9380 (1998).

    Article  CAS  Google Scholar 

  6. Asamitsu, A., Moritomo, Y., Tomioka, Y., Arima, T. & Tokura, Y. A structural phase transition induced by an external magnetic field. Nature 373, 407–409 (1995).

    Article  CAS  Google Scholar 

  7. Moshnyaga, V. et al. Intrinsic and extrinsic pressure effects in La0.7Ca0.3MnO3 thin films. J. Appl. Phys. 88, 5305–5310 (2000).

    Article  CAS  Google Scholar 

  8. Gommert, E., Cerva, H., Wecker, J. & Samwer, K. Influence of misfit stress on the magnetoresistive properties of La0.7Ca0.3MnO3 thin films. J. Appl. Phys. 85, 5417–5419 (1999).

    Article  CAS  Google Scholar 

  9. Fontcuberta, J. et al. Colossal magnetoresistance of ferromagnetic manganites: structural tuning and mechanisms. Phys. Rev. Lett. 76, 1122–1125 (1996).

    Article  CAS  Google Scholar 

  10. Uehara, M., Mori, S., Chen, C.H. & Cheong, S.-W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).

    Article  CAS  Google Scholar 

  11. Becker, T. et al. Intrinsic Inhomogeneities in manganite thin films investigated with scanning tunneling spectroscopy. Phys. Rev. Lett. 89, 237203 (2002).

    Article  CAS  Google Scholar 

  12. Zener, C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).

    Article  CAS  Google Scholar 

  13. de Gennes, P.-G. Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141–154 (1960).

    Article  CAS  Google Scholar 

  14. Anderson, P.W. & Hasegawa, H. Considerations on double exchange. Phys. Rev. 100, 675–681 (1955).

    Article  CAS  Google Scholar 

  15. Gupta, S., Ranjit, R., Mitra, C., Raychaudhuri, P. & Pinto, R. Enhanced room-temperature magnetoresistance in La0.7Sr0.3MnO3-glass composites. Appl. Phys. Lett. 78, 362–364 (2001).

    Article  CAS  Google Scholar 

  16. Petrov, D.K., Krusin-Elbaum, L., Sun, J.Z., Feild, C. & Duncombe, P.R. Enhanced magnetoresistance in sintered granular manganite/insulator systems. Appl. Phys. Lett. 75, 995–997 (1999).

    Article  CAS  Google Scholar 

  17. Moshnyaga, V. et al. Preparation of rare-earth manganite-oxide thin films by metalorganic aerosol deposition technique. Appl. Phys. Lett. 74, 2842–2844 (1999).

    Article  CAS  Google Scholar 

  18. Egerton, R.F. Electron Energy Loss Spectroscopy In The Electron Microscope (Plenum, New York, 1996)

    Book  Google Scholar 

  19. Aarts, J., Freisem, S., Hendrikx, R. & Zandbergen, H.W. Disorder effects in epitaxial thin films of (La,Ca)MnO3 . Appl. Phys. Lett. 72, 2975–2977 (1998).

    Article  CAS  Google Scholar 

  20. Köster, S.A. et al. Doping of interfaces in (La0.7Sr0.3MnO3)1–x:(MgO)x composite films. Appl. Phys. Lett. 81, 1648–1650 (2002).

    Article  Google Scholar 

  21. Rajeswari, M. et al. Correlation between magnetic homogeneity, oxygen content, and electrical and magnetic properties of perovskite manganite thin films. Appl. Phys. Lett. 73, 2672–2674 (1998).

    Article  CAS  Google Scholar 

  22. Bohigas, X., Tejada, J., Marínez-Sarrión, M.L., Tripp, S. & Black, R. Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3 . J. Magn. Magn. Mater. 208, 85–92 (2000).

    Article  CAS  Google Scholar 

  23. Mydosh, J.A. Spin Glasses: An Experimental Introduction (Taylor & Frensis, London–Washington, 1993).

    Google Scholar 

  24. Bibes, M. et al. Nanoscale multiphase separation at La2/3Ca1/3MnO3/SrTiO3 interfaces. Phys. Rev. Lett. 87, 067210 (2001).

    Article  CAS  Google Scholar 

  25. Wiedenhorst, B. et al. Strain effects and microstructure of epitaxial manganite thin films and heterostructures. Appl. Phys. Lett. 74, 3636–3638 (1999).

    Article  CAS  Google Scholar 

  26. Wang, H.S. et al. Role of strain in magnetotransport properties of Pr0.67Sr0.33MnO3 thin films. J. Appl. Phys. 87, 7409–7414 (2000).

    Article  CAS  Google Scholar 

  27. Lebedev, O.I., Van Tendeloo, G., Amelinckx, S., Leibold, B. & Habermeier, H.-U. Structure and microstructure of La1-xCaxMnO3-δ thin films prepared by pulsed laser deposition. Phys. Rev. B 58, 8065–8074 (1998).

    Article  CAS  Google Scholar 

  28. Rao, R. et al. Three-dimensional strain states and crystallographic domain structures of epitaxial colossal magnetoresistive La0.8Ca0.2MnO3 thin films. App. Phys. Lett. 73, 3294–3296 (1998).

    Article  CAS  Google Scholar 

  29. Sun, J.R. et al. Strain dependent annealing effects in La0.67Ca0.33MnO3-δ films. Appl. Phys. Lett. 76, 1164–1166 (2000).

    Article  CAS  Google Scholar 

  30. Schiffer, P., Ramirez, A.P., Bao, W. & Cheong, S.-W. Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3 . Phys. Rev. Lett. 75, 3336–3339 (1995).

    Article  CAS  Google Scholar 

  31. Millis, A.J., Darling, T. & Migliori, A. Quantifying strain dependence in 'colossal' magnetoresistance manganites. J. Appl. Phys. 83, 1588–1591 (1998).

    Article  CAS  Google Scholar 

  32. Radaelli, P.G., Marezio, M., Hwang, H.Y., Cheong, S–W. & Batlogg, B. Charge localization by static and dynamic distortions of the MnO6 octahedra in perovskite manganites. Phys. Rev. B 54, 8992–8995 (1996).

    Article  CAS  Google Scholar 

  33. Tomioka, Y., Asamitsu, A. & Tokura, Y. Magnetotransport properties and magnetostructural phenomenon in single crystals of La0.7(Ca1–ySry)0.3MnO3 . Phys. Rev. B 63, 024421 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank H.-U. Krebs for help in X-ray measurements. The work was supported by the Deutche Forschungsgemeinschaft via SFB 602, project A2 and within the framework of IUAP V-1 of the Belgian government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Moshnyaga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshnyaga, V., Damaschke, B., Shapoval, O. et al. Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1–x:(MgO)x nanocomposite films. Nature Mater 2, 247–252 (2003). https://doi.org/10.1038/nmat859

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat859

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing