Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optically induced multispin entanglement in a semiconductor quantum well

Abstract

According to quantum mechanics, a many-particle system is allowed to exhibit non-local behaviour, in that measurements performed on one of the particles can affect a second one that is far away. These so-called entangled states are crucial for the implementation of most quantum information protocols and, in particular, gates for quantum computation. Here we use ultrafast optical pulses and coherent techniques to create and control spin-entangled states in an ensemble of non-interacting electrons bound to donors (at least three) and at least two Mn2+ ions in a CdTe quantum well. Our method, relying on the exchange interaction between localized excitons and paramagnetic impurities, can in principle be applied to entangle an arbitrarily large number of spins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generic level structure of a system of paramagnetic impurities coupled to a single localized exciton in a quantum-well.
Figure 2: Spontaneous resonant Raman scattering data.
Figure 3: Time-domain experiments.
Figure 4: Frequency versus magnetic field.

Similar content being viewed by others

References

  1. Wheeler, J.A. & Zurek, W.H. (eds) Quantum Theory and Measurements (Princeton Univ. Press, Princeton, 1983).

    Book  Google Scholar 

  2. Kwiat, P.G., Berglund, A.J., Altepeter J.B. & White, A.G. Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000).

    Article  CAS  Google Scholar 

  3. Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 (2000).

    Article  CAS  Google Scholar 

  4. Sackett, C.A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article  CAS  Google Scholar 

  5. Nielsen, M.A. & Chuang, I.L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  6. Piermarocchi, C., Chen, P., Sham, L.J. & Steel, D.G. Optical RKKY Interaction between Charged Semiconductor Quantum Dots. Phys. Rev. Lett. 89, 167402 (2002).

    Article  CAS  Google Scholar 

  7. DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G. & Whaley, K.B. Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000).

    Article  CAS  Google Scholar 

  8. Burkard, G., Loss D. & DiVincenzo, D.P. Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999).

    Article  CAS  Google Scholar 

  9. O'Brien, J.L. et al. Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B 64, R161401 (2001).

    Article  Google Scholar 

  10. Chen, G. et al. Optically induced entanglement of excitons in a single quantum dot. Science 289, 1906–1909 (2000).

    Article  CAS  Google Scholar 

  11. Vandersypen, L.M.K. et al. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001).

    Article  CAS  Google Scholar 

  12. Stühler, J. et al. Multiple Mn2+-spin-flip Raman scattering at high fields via magnetic polaron states in semimagnetic quantum wells. Phys. Rev. Lett. 74, 2567–2570 (1995); Erratum. Phys. Rev. Lett. 74, 4966 (1995).

    Article  Google Scholar 

  13. Stühler, J. et al. Polarization properties of multiple Mn2+-spin-flip Raman scattering in semimagnetic quantum wells. J. Cryst. Growth 159, 1001–1004 (1996).

    Article  Google Scholar 

  14. Merlin, R. et al. Multiphonon processes in YbS. Phys. Rev. B 17, 4951–4958 (1978).

    Article  CAS  Google Scholar 

  15. Kavokin, K.V. & Merkulov, I.A. Multispin Raman paramagnetic resonance: Quantum dynamics of classically large angular momenta. Phys. Rev. B 55, R7371–R7374 (1997).

    Article  CAS  Google Scholar 

  16. Martin, R.W. et al. Two-dimensional spin confinement in strained-layer quantum wells. Phys. Rev. B 42, 9237–9240 (1990).

    Article  CAS  Google Scholar 

  17. Kumar, A.T.N., Rosca, F., Widom A. & Champion, P.M. Investigations of amplitude and phase excitation profiles in femtosecond coherence spectroscopy. J. Chem. Phys. 114, 701–724 (2001).

    Article  CAS  Google Scholar 

  18. Pollard, W.T., Lee S.Y. & Mathies, R.A. Wave packet theory of dynamic absorption spectra in femtosecond pump–probe experiments. J. Chem. Phys. 92, 4012–4029 (1990).

    Article  CAS  Google Scholar 

  19. Furdyna, J.K. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).

    Article  CAS  Google Scholar 

  20. Adleff, A., Hendorfer, G., Jantsch, W. & Faschinger, W. Diffusion of Mn-atoms during the growth of CdTe-MnTe superlattices. Mater. Sci. Forum 143–147, 1409–1413 (1994).

    Google Scholar 

  21. Kusrayev, Y.G., Koudinov, A.V., Wolverson, D. & Kossut, J. Anisotropy of spin-flip Raman scattering in CdTe/CdMnTe quantum wells. Phys. Status Solidi 229, 741–744 (2002).

    Article  CAS  Google Scholar 

  22. Ramdas, A.K. & Rodriguez, S. in Light Scattering in Solids VI (eds Cardona M. & Güntherodt G.) Ch. 4. 137–206 (Springer, Berlin, 1991).

    Book  Google Scholar 

  23. Crooker, S.A., Awschalom, D.D. & Samarth, N. Time-resolved Faraday rotation spectroscopy of spin dynamics in digital magnetic heterostructures. IEEE J. Sel. Top. Quant. 1, 1082–1092 (1995).

    Article  CAS  Google Scholar 

  24. Crooker, S.A., Awschalom, D.D., Baumberg, J.J., Flack, F. & Samarth, N. Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells. Phys. Rev. B 56, 7574–7588 (1997).

    Article  CAS  Google Scholar 

  25. Barkhuijsen, H., De Beer, R., Bovée, W.M.M.J. & van Ormondt, D. Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure. J. Mag. Res. 61, 465–481 (1985).

    CAS  Google Scholar 

  26. Wise, F.W., Rosker, M.J., Millhauser, G.L. & Tang, C.L. Application of linear prediction least-squares fitting to time-resolved optical spectroscopy. IEEE J. Quant. Elect. 23, 1116–1121 (1987).

    Article  Google Scholar 

  27. Besombes, L., Kheng, K. & Martrou, D. Exciton and biexciton fine structure in single elongated islands grown on a vicinal surface. Phys. Rev. Lett. 85, 425–428 (2000).

    Article  CAS  Google Scholar 

  28. Benoit à la Guillaume, C. & Lavallard, P. Excited states of an exciton bound to a neutral donor. Phys. Status Solidi B 70, K143–K145 (1975).

    Article  Google Scholar 

  29. Boyd, R.W. Nonlinear Optics. Ch. 9, 365–397 (Academic, San Diego, 1992).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from The Petroleum Research Fund, administered by the ACS (American Chemical Society), for partial support of this research. Work also supported by the NSF (National Science Foundation) under Grants No. PHY 0114336 and No. DMR 0072897, by the AFOSR(Air Force Office of Scientific Research) under contract F49620-00-1-0328 through the MURI program and by the DARPA-SpinS program. A.V.B. acknowledges partial support from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Merlin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, J., Bragas, A., Furdyna, J. et al. Optically induced multispin entanglement in a semiconductor quantum well. Nature Mater 2, 175–179 (2003). https://doi.org/10.1038/nmat839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing