Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new phase diagram for layered antiferromagnetic films

Abstract

Magnetic multilayer films provide convenient model systems for studying the physics of antiferromagnetic films and surfaces. Here we report on the magnetic reversal and domain structure in antiferromagnetically coupled Co/Pt multilayers that are isomorphic to layered antiferromagnetic films with perpendicular magnetic anisotropy. We observe two distinct remanent states and reversal modes of the system. In mode 1 the magnetization in each layer reverses independently, producing an antiferromagnetic remanent state that shows full lateral correlation and vertical anticorrelation across the interlayers. In mode 2 the reversal in adjacent layers is locally synchronized with a remanent state that is vertically correlated but laterally anticorrelated in ferromagnetic stripe domains. Theoretical energy calculations of the two ground states identify a new phase boundary that is in good agreement with our experimental results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic hysteresis and small-angle scattering (SAS) results for AF-coupled multilayers with different magnetic layer thicknesses.
Figure 2: Out-of-plane SQUID measurements and MFM images of [(Co/Pt)X−1/Co/Ru]N multilayers with N = 4 and X = 7–10.
Figure 3: a, Phase diagram of the magnetic reversal modes in [(Co/Pt)X−1/Co/Ru]N multilayers depending on N and X.

Similar content being viewed by others

References

  1. Néel, L. Propriétés magnétiques de l'état métallique et énergie d'interaction entre atomes magnétiques. Ann. Phys. (Paris) 5, 232–279 (1936).

    Google Scholar 

  2. Kools, J.C.S. Exchange-biased spin-valves for magnetic storage. IEEE Trans. Magn. 32, 3165–3184 (1996).

    Article  CAS  Google Scholar 

  3. Nogués, J. & Schuller, I.K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  4. Nolting, F. et al. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405, 767–769 (2000).

    Article  CAS  Google Scholar 

  5. Kortright, J.B. et al. Research frontiers in magnetic materials at soft X-ray synchrotron radiation facilities. J. Magn. Magn. Mater. 207, 7–44 (1999).

    Article  CAS  Google Scholar 

  6. Camley, R.E. & Tilley, D.R. Phase transitions in magnetic superlattices. Phys. Rev. B 37, 3413–3421 (1988).

    Article  CAS  Google Scholar 

  7. Dieny, B.J., Gavigan, P. & Rebouillat, J.P. Magnetisation processes, hysteresis and finite-size effects in model multilayer systems of cubic or unitaxial anisotropy with antiferromagnetic coupling between adjacent layers. J. Phys. Condens. Matter 2, 159–185 (1990).

    Article  Google Scholar 

  8. Hood, R.Q. & Falicov, L.M. Itinerant-electron, one-dimensional magnetic superlattices. Phys. Rev. B 44, 9989–9996 (1991).

    Article  CAS  Google Scholar 

  9. Wang, R.W., Mills, D.L., Fullerton, E.E., Mattson, J.E. & Bader, S.D. Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory. Phys. Rev. Lett. 72, 920–923 (1994).

    Article  CAS  Google Scholar 

  10. Jiang, J.S. et al. Exchange-bias effect in Fe/Cr(211) double superlattice structures. Phys. Rev. B 61, 9653–9656 (2000).

    Article  CAS  Google Scholar 

  11. Mills, D.L. Surface spin-flop state in a simple antiferromagnet. Phys. Rev. Lett. 20, 18–21 (1968).

    Article  CAS  Google Scholar 

  12. Micheletti, C., Griffiths, R.B. & Yeomans, J.M. Surface spin-flop and discommensuration transitions in antiferromagnets. Phys. Rev. B 59, 6239–6249 (1999).

    Article  CAS  Google Scholar 

  13. Johnson, M.T., Bloemen, P.J.H., den Broeder, F.J.A. & de Vries, J.J. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409–1458 (1996).

    Article  CAS  Google Scholar 

  14. Parkin, S.S.P., More, N. & Roche, K.P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990).

    Article  CAS  Google Scholar 

  15. Willekens, M.M.H. et al. in Magnetic Ultrathin Films: Multilayers and Surfaces, Interfaces and Characterization, MRS Symp. Proc. 313 (eds Jonker, B.T. et al.) 129–135 (Materials Research Society, Pittsburgh, 1993).

    Google Scholar 

  16. Kittel, C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946); Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541–583 (1949).

    Article  CAS  Google Scholar 

  17. Kooy, C. & Enz, U. Experimental and theoretical study of the domain configuration in thin layers of BaFe12O19 . Philips Res. Rep. 15, 7–29 (1960).

    Google Scholar 

  18. Hubert, A. & Schäfer, R. Magnetic Domains Ch. 3, 5 (Springer, Berlin, 1998).

    Google Scholar 

  19. Bochi, G. et al. Magnetic domain structure in ultrathin films. Phys. Rev. Lett. 75, 1839–1842 (1995).

    Article  CAS  Google Scholar 

  20. Gehanno, V., Samson, Y., Marty, A., Gilles, B. & Chamberod, A. Magnetic susceptibility and magnetic domain configuration as a function of the layer thickness in epitaxial FePd(001) thin films ordered in the L1(0) structure. J. Magn. Magn. Mater. 172, 26–40 (1997).

    Article  CAS  Google Scholar 

  21. Seul, M. & Wolfe, R. Evolution of disorder in two-dimensional stripe patterns: “Smectic” instabilities and disclination unbinding. Phys. Rev. Lett. 68, 2460–2463 (1992).

    Article  CAS  Google Scholar 

  22. Bobcock, K.L. & Wetervelt, R.M. Avalanches and self-organization in cellular magnetic-domain patterns. Phys. Rev. Lett. 64, 2168–2171 (1990).

    Article  Google Scholar 

  23. Kortright, J.B. et al. Soft x-ray small-angle scattering as a sensitive probe of magnetic and charge heterogeneity. Phys. Rev. B 64, 092401 (2001).

    Article  Google Scholar 

  24. Málek, Z. & Kamberský, V. Theory of the domain structure of thin films of magnetically uni-axial materials. Czech J. Phys. 8, 416–422 (1958).

    Article  Google Scholar 

  25. Hameed, S. et al. Analysis of disordered stripe magnetic domains in strained epitaxial Ni(001) films. Phys. Rev. B 64, 184406 (2001).

    Article  Google Scholar 

  26. Labrune, M. & Belliard, L. Stripe domains in multilayers: Micromagnetic simulations. Phys. Status Solidi A 174, 483–497 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work at LBNL was supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Science of the US Department of Energy under contract DE-AC03-76SF00098. O.H. was partially supported by the Deutsche Forschungsgemeinschaft through a Forschungsstipendium under the contract number HE 3286/1-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric E. Fullerton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellwig, O., Kirk, T., Kortright, J. et al. A new phase diagram for layered antiferromagnetic films. Nature Mater 2, 112–116 (2003). https://doi.org/10.1038/nmat806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing