Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites

Abstract

The extraordinary mechanical, thermal and electrical properties of carbon nanotubes have prompted intense research into a wide range of applications in structural materials, electronics, chemical processing and energy management. Attempts have been made to develop advanced engineering materials with improved or novel properties through the incorporation of carbon nanotubes in selected matrices (polymers, metals and ceramics). But the use of carbon nanotubes to reinforce ceramic composites has not been very successful; for example, in alumina-based systems only a 24% increase in toughness has been obtained so far. Here we demonstrate their potential use in reinforcing nanocrystalline ceramics. We have fabricated fully dense nanocomposites of single-wall carbon nanotubes with nanocrystalline alumina (Al2O3) matrix at sintering temperatures as low as 1,150 °C by spark-plasma sintering. A fracture toughness of 9.7 MPa m½, nearly three times that of pure nanocrystalline alumina, can be achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 'Ropes' of carbon nanotubes.
Figure 2: Composite fracture surface.
Figure 3: Indentation-induced crack.
Figure 4: Fracture toughness as a function of nanotube content.
Figure 5: SWCN morphology in the composites.
Figure 6: A partially consolidated composite.

Similar content being viewed by others

References

  1. Gleiter, H. in Mechanical Properties and Deformation Behavior of Materials Having Ultra-fine Microstructures (eds Nastasi, M., Parkin, D.M. & Gleiter, H.) 3–35 (Kluwer Academic, Netherlands, 1993).

    Book  Google Scholar 

  2. Mayo, M.J. in Mechanical Properties and Deformation Behavior of Materials Having Ultra-fine Microstructures (eds Nastasi, M., Parkin, D.M.& Gleiter, H.) 361–380 (Kluwer Academic, Netherlands, 1993).

    Book  Google Scholar 

  3. Mayo, M.J. in Nanostructured Materials (eds. Chow, G. M & Noskova, N.I.) 361–385 (Kluwer Academic, Netherlands, 1998).

    Book  Google Scholar 

  4. Kuntz, J.D., Zhan, G.-D. & Mukherjee, A.K. Interim report to US army research office, Durham, North Carolina (April, 2002).

  5. Niihara, K. New design concept of structural ceramic–ceramic nanocomposites. J. Ceram. Soc. Jpn 99, 974–982 (1991).

    Article  CAS  Google Scholar 

  6. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  7. Calvert, P. Strength in disunity. Nature 357, 365–366 (1992).

    Article  Google Scholar 

  8. Ruoff, R.S. & Lorents, D.C. Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995).

    Article  CAS  Google Scholar 

  9. Iijima, S., Brabec, Ch., Maiti, A. & Bernholc, Zj. Structural flexibility of carbon nanotubes. J. Phys. Chem. 104, 2089–2092 (1996).

    Article  CAS  Google Scholar 

  10. Treacy, M.M.J., Ebbesen, T.W. & Gibson, J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996).

    Article  CAS  Google Scholar 

  11. Falvo, M.R. et al. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997).

    Article  CAS  Google Scholar 

  12. Subramooney, S. Nanocarbons—structure, properties, and potential applications. Adv. Mater. 15, 1157–1475 (1998).

    Article  Google Scholar 

  13. Yu, M.-F., Files, B.S., Arepalli, S. & Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000).

  14. Wager, H.D., Lourie, O., Feldman, Y. & Tenne, R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188–190 (1998).

    Article  Google Scholar 

  15. Bower, B., Rosen, R., Jin, L., Han, J. & Zhou, O. Deformation of carbon nanotubes in nanotube–polymer composites. Appl. Phys. Lett. 74, 3317–3319 (1999).

    Article  CAS  Google Scholar 

  16. Ajayan, P.M., Stephan, O., Colliex, C. & Trauth, D. Aligned carbon nanotubes arrays formed by cutting a polymer resin–nanotube composite. Science 265, 1212–1214 (1994).

    Article  CAS  Google Scholar 

  17. Calvert, P. A recipe for strength. Nature 399, 210–211 (1999).

    Article  CAS  Google Scholar 

  18. Ajayan, P.M., Schadler, L.S., Giannaris, C. & Rubio, A. Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12, 750–753 (2000).

    Article  CAS  Google Scholar 

  19. Xu, L. et al. Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37, 855–858 (1999).

    Article  CAS  Google Scholar 

  20. Ma, R.Z., Wu, J., Wei, B.Q., Liang, J. & Wu, D.H. Processing and properties of carbon nanotubes–nano-SiC ceramic. J. Mater. Sci. 33, 5243–5246 (1998).

    Article  CAS  Google Scholar 

  21. Flahaut, E. et al. Carbon nanotubes–metal–oxide nanocomposites: microstructure, electrical conductivity, and mechanical properties. Acta Mater. 48, 3803–3812 (2000).

    Article  CAS  Google Scholar 

  22. Laurent, Ch., Peigney, A., Dumortier, O. & Rousset, A. Carbon nanotubes–Fe–alumina nanocomposites. Part II: Microstructure and mechanical properties of the hot-pressed composites. J. Euro. Ceram. Soc. 18, 2005–2013 (1998).

    Article  Google Scholar 

  23. Peigney, A., Laurent, Ch., Dumortier, O. & Rousset, A. Carbon nanotubes–Fe–alumina nanocomposites. Part I: Influence of the Fe content on the synthesis of powders. J. Euro. Ceram. Soc. 18, 1995–2004 (1998).

    Article  CAS  Google Scholar 

  24. Peigney, A., Laurent, Ch., Flahaut, E. & Rousset, A. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Inter. 26, 677–683 (2000).

    Article  CAS  Google Scholar 

  25. Peigney, A., Laurent, Ch., Dobigeon, F. & Rousset, A. Carbon nanotubes grown in-situ by a novel catalytic method. J. Mater. Res. 12, 613–615 (1997).

    Article  CAS  Google Scholar 

  26. Siegel, R.W. et al. Mechanical behavior of polymer and ceramic matrix nanocomposites. Scripta Mater. 44, 2061–64 (2001).

    Article  CAS  Google Scholar 

  27. Dujardin, E., Ebbesen, T.W., Krishnan, A. & Treacy, M.J. Wetting of single shell carbon nanotubes. Adv. Mater. 10, 1472–1475 (1998).

    Article  CAS  Google Scholar 

  28. Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).

    Article  CAS  Google Scholar 

  29. Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A. & Smalley, R.E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. 19, 1800–1805 (2001).

    Article  CAS  Google Scholar 

  30. Omori, M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. A 287, 183–88 (2000).

    Article  Google Scholar 

  31. Antis, G.R., Chantikul, P., Lawn, B.R. & Marshall, D.B. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurement. J. Am. Ceram. Soc. 64, 533–38 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

This investigation was supported by a grant (G-DAAD 19-00-1-0185) from the US Army Research Office with W. Mullins as the Program Manager. We thank J. Garay for help in SPS, and C. Nelson of the National Center for Electron Microscopy at the Lawrence Berkeley Laboratory for assistance with TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiya K. Mukherjee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, GD., Kuntz, J., Wan, J. et al. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nature Mater 2, 38–42 (2003). https://doi.org/10.1038/nmat793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing