Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cyclodextrin-threaded conjugated polyrotaxanes as insulated molecular wires with reduced interstrand interactions

Abstract

Control of intermolecular interactions1 is crucial to the exploitation of molecular semiconductors for both organic electronics2 and the viable manipulation and incorporation of single molecules3 into nano-engineered devices. Here we explore the properties of a class of materials that are engineered at a supramolecular level4,5,6,7,8,9,10 by threading a conjugated macromolecule, such as poly(para-phenylene), poly(4,4′-diphenylene vinylene) or polyfluorene through α- or β-cyclodextrin rings, so as to reduce intermolecular interactions and solid-state packing effects that red-shift and partially quench the luminescence11. Our approach preserves the fundamental semiconducting properties of the conjugated wires, and is effective at both increasing the photoluminescence efficiency and blue-shifting the emission of the conjugated cores, in the solid state, while still allowing charge-transport. We used the polymers to prepare single-layer light-emitting diodes with Ca and Al cathodes, and observed blue and green emission. The reduced tendency for polymer chains to aggregate allows solution-processing of individual polyrotaxane wires onto substrates, as revealed by scanning force microscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of the polyrotaxanes used in this work.
Figure 2: Optical properties of the polyrotaxanes and of the uninsulated wires.
Figure 3: Electroluminescence properties of insulated molecular wires.
Figure 4: Surface morphology of spin-coated polyrotaxanes and reference polymer.

Similar content being viewed by others

References

  1. Cornil, J., dos Santos, D.A., Crispin, X., Silbey, R. & Brédas, J.L. Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: a quantum-chemical characterization. J. Am. Chem. Soc. 120, 1289–1299 (1998).

    Article  CAS  Google Scholar 

  2. Cacialli, F. Organic semiconductors for the new millennium. Phil. Trans. Royal Soc. Lond. A 358, 173–192 (2000).

    Article  CAS  Google Scholar 

  3. Liang, W., Shores, M.P., Bockrath, M., Long, J.R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  CAS  Google Scholar 

  4. Gong, C. & Gibson, H.W. in Molecular Catenanes, Rotaxanes and Knots (eds Sauvage, J.-P. & Dietrich-Buchecker, C.) 277–321 (Wiley-VCH, Weinheim, 1999).

    Book  Google Scholar 

  5. Collier, C.P. et al. Molecular-based electronically switchable tunnel junction devices. J. Am. Chem. Soc. 123, 12632–12641 (2001).

    Article  CAS  Google Scholar 

  6. Raymo, F.M. & Stoddart, J.F. Interlocked macromolecules. Chem. Rev. 99, 1643–1663 (1999).

    Article  CAS  Google Scholar 

  7. Nepogodiev, S.A. & Stoddart, J.F. Cyclodextrin-based catenanes and rotaxanes. Chem. Rev. 98, 1959–1976 (1998).

    Article  CAS  Google Scholar 

  8. Zhu, S.S. & Swager, T.M. Conducting polymetallorotaxanes: Metal ion mediated enhancements in conductivity and charge localization. J. Am. Chem. Soc. 119, 12568–12577 (1997).

    Article  CAS  Google Scholar 

  9. MacLachlan, M.J., Rose, A. & Swager, T.M. A rotaxane exciplex. J. Am. Chem. Soc. 123, 9180–9181 (2001).

    Article  CAS  Google Scholar 

  10. Gadret, G. et al. Optical and electroemission properties of thin films of supermolecular anthracene-based rotaxanes. Appl. Surf. Sci. 175, 369–373 (2001).

    Article  Google Scholar 

  11. Cornil, J., Heeger, A.J. & Brédas, J.L. Effects of intermolecular interactions on the lowest excited state in luminescent conjugated polymers and oligomers. Chem. Phys. Lett. 272, 463–470 (1997).

    Article  CAS  Google Scholar 

  12. Burroughes, J.H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  CAS  Google Scholar 

  13. Kraft, A., Grimsdale, A.C. & Holmes, A.B. Electroluminescent conjugated polymers — seeing polymers in a new light. Angew. Chem. Int. Edn 37, 402–428 (1998).

    Article  Google Scholar 

  14. Cardin, D.J. Encapsulated conducting polymers. Adv. Mater. 14, 553–563 (2002).

    Article  CAS  Google Scholar 

  15. Shimomura, T., Akai, T., Abe, T. & Ito, K. Atomic force microscopy observation of insulated molecular wire formed by conducting polymer and molecular nanotube. J. Chem. Phys. 116, 1753–1756 (2002).

    Article  CAS  Google Scholar 

  16. Buey, J. & Swager, T.M. Three-strand conducting ladder polymers: two-step electropolymerization of metallorotaxanes. Angew. Chem. Int. Edn 39, 608–612 (2000).

    Article  CAS  Google Scholar 

  17. Lagrost, C. et al. Host-guest complexation: a convenient route to polybithiophene composites by electrosynthesis in aqueous media. synthesis and characterization of a new material containing cyclodextrins. J. Mater. Chem. 9, 2351–2358 (1999).

    Article  CAS  Google Scholar 

  18. Vidal, P.L. et al. Conjugated polyrotaxanes containing coordinating units: reversible copper(I) metallation–demetallation using lithium as intermediate scaffolding. Chem. Commun. 629–630 (1998).

  19. Taylor, P.N. et al. Insulated molecular wires: synthesis of conjugated polyrotaxanes by Suzuki coupling in water. Angew. Chem. Int. Edn 39, 3456–3460 (2000).

    Article  CAS  Google Scholar 

  20. Balzani, V., Credi, A., Raymo, F.M. & Stoddart, J.F. Artificial molecular machines. Angew. Chem. Int. Edn 39, 3349–3391 (2000).

    Google Scholar 

  21. Brouwer, A.M. et al. Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291, 2124–2128 (2001).

    Article  CAS  Google Scholar 

  22. Stanier, C.A., Alderman, S.J., Claridge, T.D.W. & Anderson, H.L. Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. Angew. Chem. Int. Edn 41, 1769–1772 (2002).

    Article  Google Scholar 

  23. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  CAS  Google Scholar 

  24. Barta, P., Cacialli, F., Friend, R.H. & Zagorska, M. Efficient photo and electroluminescence of regioregular poly(alkylthiophene)s. J. Appl. Phys. 84, 6279–6284 (1998).

    Article  CAS  Google Scholar 

  25. Gigli, G., Barbarella, G., Favaretto, L., Cacialli, F. & Cingolani, R. High-efficiency oligothiopene-based light-emitting diodes. Appl. Phys. Lett. 75, 439–441 (1999).

    Article  CAS  Google Scholar 

  26. McQuade, D.T., Kim, J. & Swager, T.M. A rotaxane exciplex. J. Am. Chem. Soc. 122, 5885–5886 (2000).

    Article  CAS  Google Scholar 

  27. Liu, H. et al. Synthesis and properties of crown-ether containing poly(p-phenylenevinylene). J. Mater. Chem. 11, 3063–3067 (2001).

    Article  CAS  Google Scholar 

  28. Craig, M.R., Hutchings, M.G., Claridge, T.D.W. & Anderson, H.L. Rotaxane-encapsulation enhances the stability of an azo dye in solution when bound to cellulose. Angew. Chem. Int. Edn 40, 1071–1074 (2001).

    Article  CAS  Google Scholar 

  29. Kim, J.S. et al. Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: the relation between the anode physical, chemical, and morphological properties and the device performance. J. Appl. Phys. 84, 6859–6870 (1998).

    Article  CAS  Google Scholar 

  30. Samorì, P. et al. High shape persistence in single polymer chains rigidified with lateral hydrogen bonded networks. Macromolecules 35, 5290–5294 (2002).

    Article  Google Scholar 

  31. Samorì, P., Francke, V., Mangel, T., Müllen, K. & Rabe, J.P. Poly-para-phenylene-ethynylene assemblies for a potential molecular nanowire: an SFM study. Opt. Mater. 9, 390–393 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council, the Royal Society and Cambridge Display Technology for financial and technical support. F.C. is a Royal Society University Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Franco Cacialli or Harry L. Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacialli, F., Wilson, J., Michels, J. et al. Cyclodextrin-threaded conjugated polyrotaxanes as insulated molecular wires with reduced interstrand interactions. Nature Mater 1, 160–164 (2002). https://doi.org/10.1038/nmat750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing