Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terahertz polariton propagation in patterned materials

Abstract

Generation and control of pulsed terahertz-frequency radiation have received extensive attention, with applications in terahertz spectroscopy, imaging and ultrahigh-bandwidth electro-optic signal processing1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Terahertz ‘polaritonics’, in which terahertz lattice waves called phonon-polaritons are generated, manipulated and visualized with femtosecond optical pulses17,18,19,20,21,22,23,24, offers prospects for an integrated solid-state platform for terahertz signal generation and guidance. Here, we extend terahertz polaritonics methods to patterned structures. We demonstrate femtosecond laser fabrication of polaritonic waveguide structures in lithium tantalate and lithium niobate crystals, and illustrate polariton focusing into, and propagation within, the fabricated waveguide structures. We also demonstrate a 90° turn within a structure consisting of two waveguides and a reflecting face, as well as a structure consisting of splitting and recombining elements that can be used as a terahertz Mach–Zehnder interferometer25. The structures permit integrated terahertz signal generation, propagation through waveguide-based devices, and readout within a single solid-state platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical microscope images of the waveguide structures. The machined areas from which material has been cut away appear as dark regions.
Figure 2: Polariton propagation through waveguide structures.
Figure 3: Polariton propagation through the interferometer structure shown in Fig. 1b a f,
Figure 4: Two-dimensional finite-difference time-domain simulations of the electromagnetic part of the polaritons in the interferometric structure.

Similar content being viewed by others

References

  1. Auston, D. H. & Nuss, M. C. Electrooptic generation and detection of femtosecond electrical transients. IEEE J. Quantum Elect. 24, 184–197 (1988)

    Article  Google Scholar 

  2. Auston, D. H., Cheung, K. P., Valdmanis, J. A. & Kleinman, D. A. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 53, 1555–1558 (1984)

    Article  CAS  Google Scholar 

  3. Yang, K. H., Richards, L. P. & Shen, Y. R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3 . Appl. Phys. Lett. 19, 320–323 (1971)

    Article  CAS  Google Scholar 

  4. Rangan, C. & Bucksbaum, P. H. Optimally shaped terahertz pulses for phase retrieval in a Rydberg-atom data register. Phys. Rev. A 64, 033417 (2001)

    Article  Google Scholar 

  5. Cho, G. C., Han, P. Y., Zhang, X.-C. & Bakker, H. J. Optical phonon dynamics of GaAs studied with time-resolved terahertz spectroscopy. Opt. Lett. 25, 1609–1611 (2000)

    Article  CAS  Google Scholar 

  6. Wu, Q., Hewitt, T. D. & Zhang, X.-C. Two-dimensional electro-optic imaging of THz beams. Appl. Phys. Lett. 69, 1026–1028 (1996)

    Article  CAS  Google Scholar 

  7. Jiang, Z. & Zhang, X.-C. Single-shot spatiotemporal terahertz field imaging. Opt. Lett. 23, 1114–1116 (1998)

    Article  CAS  Google Scholar 

  8. Harde, H., Zhao, J., Wolff, M., Cheville, R. A. & Grischkowsky, D. THz time-domain spectroscopy on ammonia. J. Phys. Chem. 105, 6038–6047 (2001)

    Article  CAS  Google Scholar 

  9. McGowan, R. W., Gallot, G. & Grischkowsky, D. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. Opt. Lett. 24, 1431–1433 (1999)

    Article  CAS  Google Scholar 

  10. Jamison, S. P., McGowan, R. W. & Grischkowsky, D. Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers. Appl. Phys. Lett. 76, 1987–1989 (2000)

    Article  CAS  Google Scholar 

  11. Gallot, G., Jamison, S. P., McGowan, R. W. & Grischkowsky, D. Terahertz waveguides. J. Opt. Soc. Am. B 17, 851–863 (2000)

    Article  CAS  Google Scholar 

  12. Grischkowsky, D. R. Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quant. 6, 1122–1135 (2000)

    Article  CAS  Google Scholar 

  13. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Transient photoconductivity in GaAs as measured by time-resolved THz spectroscopy. Phys. Rev. B. 62, 15764 (2000)

    Article  CAS  Google Scholar 

  14. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy. J. Appl. Phys. 90, 5915–5923 (2001)

    Article  CAS  Google Scholar 

  15. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001)

    Article  CAS  Google Scholar 

  16. Kohler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)

    Article  Google Scholar 

  17. Barker, A. S. & Loudon, R. Response function in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals. Rev. Mod. Phys. 44, 18–47 (1972)

    Article  CAS  Google Scholar 

  18. Dougherty, T. P. et al. Femtosecond resolution of soft mode dynamics in structural phase transitions. Science 258, 770–774 (1992)

    Article  CAS  Google Scholar 

  19. Dougherty, T. P., Wiederrecht, G. P. & Nelson, K. A. Impulsive stimulated Raman scattering experiments in the polariton regime. J. Opt. Soc. Am. B 92, 2179–2189 (1992)

    Article  Google Scholar 

  20. Bakker, H. J., Hunsche, S. & Kurz, H. Coherent phonon polaritons as probes of anharmonic phonons in ferroelectrics. Rev. Mod. Phys. 70, 523–536 (1998)

    Article  CAS  Google Scholar 

  21. Koehl, R. M., Adachi, S. & Nelson, K. A. Direct visualization of collective wavepacket dynamics. J. Phys. Chem. A 103, 10260–10267 (1999)

    Article  CAS  Google Scholar 

  22. Koehl, R. M. & Nelson, K. A. Coherent optical control over collective vibrations traveling at lightlike speeds. J. Chem. Phys. 114, 1443–1446 (2001)

    Article  CAS  Google Scholar 

  23. Koehl, R. M., Adachi, S. & Nelson, K. A. Real-space polariton wave packet imaging. J. Chem. Phys. 110, 1317–1320 (1999)

    Article  CAS  Google Scholar 

  24. Stoyanov, N. S., Ward, D. W., Feurer, T. & Nelson, K. A. Direct visualization of phonon-polariton focusing and amplitude enhancement. J. Chem. Phys. 117, 2897–2901 (2002)

    Article  CAS  Google Scholar 

  25. Hecht, E. Optics (Addison-Wesley, Reading, Massachusetts, 1987)

    Google Scholar 

  26. Schall, M., Helm, H. & Keiding, S. R. Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy. Int. J. Infrared Milli. 20, 595–604 (1999)

    Article  CAS  Google Scholar 

  27. Palik, E. D. (ed.) Handbook of Optical Constants of Solids III 777–805 (Academic, San Diego, 1998)

  28. Palik, E. D. (ed.) Handbook of Optical Constants of Solids 695–702 (Academic, Orlando, 1985)

  29. Schaffer, C. B., Brodeur, A., Garcia, J. F. & Mazur, E. Micromachining bulk glass using femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93–95 (2001)

    Article  CAS  Google Scholar 

  30. Schaffer, C. B., Brodeur, A. & Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784–1794 (2001)

    Article  CAS  Google Scholar 

  31. Glezer, E. N. & Mazur, E. Ultrafast-laser driver micro-explosions in transparent materials. Appl. Phys. Lett. 71, 882–884 (1997)

    Article  CAS  Google Scholar 

  32. Minoshima, K., Kowalevicz, A. M., Hartl, I., Ippen, E. P. & Fujimoto, J. G. Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Opt. Lett. 26, 1516–1518 (2001)

    Article  CAS  Google Scholar 

  33. Yee, K. S. Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antenn. Propag. 14, 302–307 (1966)

    Article  Google Scholar 

  34. Taflove, A. & Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artec House, Boston, 2000)

    Google Scholar 

  35. Ramo, S., Whinnery, J. R. & Van Duzer, T. Fields and Waves in Communication Electronics (Wiley, New York, 1994)

    Google Scholar 

  36. Someda, C. G. Electromagnetic Waves (Chapman & Hall, New York, 1998)

    Google Scholar 

  37. Qiu, T. & Maier, M. Long-distance propagation and damping of low-frequency phonon polaritons in LiNbO3 . Phys. Rev. B 56, R5717–R5720 (1997)

    Article  CAS  Google Scholar 

  38. Talbot, H. F. Philos. Mag. 9, 401 (1836)

    Google Scholar 

  39. Patorski, K. Progress in Optics (ed. Wolf, E.)) (North Holland, Amsterdam, 1989)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the MRSEC programme of the National Science Foundation. T. F. acknowledges financial support from the Max Kade Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Nelson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoyanov, N., Ward, D., Feurer, T. et al. Terahertz polariton propagation in patterned materials. Nature Mater 1, 95–98 (2002). https://doi.org/10.1038/nmat725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing