Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides

Abstract

Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hierarchy of band inversions arising from p orbitals in a trigonal crystal field.
Figure 2: Chalcogen-derived topological ladder in PdTe2.
Figure 3: Generic observation of bulk Dirac fermions and topological surface states in TMDs.
Figure 4: Inter-layer hopping-controlled topological and Dirac phases.

Similar content being viewed by others

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  2. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  CAS  Google Scholar 

  3. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal Na3Bi. Science 343, 864–867 (2014).

    Article  CAS  Google Scholar 

  4. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B. 85, 195320 (2012).

    Article  Google Scholar 

  5. Wang, Z. et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    Article  Google Scholar 

  6. Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    Article  Google Scholar 

  7. Yang, B.-J. & Nagaosa, N. et al. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).

    Article  CAS  Google Scholar 

  8. Yang, B.-J., Morimoto, T. & Furusaki, A. Topological charges of three-dimensional Dirac semimetals with rotation symmetry. Phys. Rev. B 92, 165120 (2015).

    Article  Google Scholar 

  9. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  CAS  Google Scholar 

  10. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  CAS  Google Scholar 

  11. Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Article  Google Scholar 

  12. Wan, X. et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  13. Weng, H. et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  14. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  15. Borisenko, S. et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Preprint at http://arxiv.org/abs/1507.04847 (2016).

  16. Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2 . Nat. Mater. 15, 1155–1160 (2016).

    Article  CAS  Google Scholar 

  17. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 . Nat. Phys. 12, 1105–1110 (2016).

    Article  CAS  Google Scholar 

  18. Tamai, A. et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2 . Phys. Rev X 6, 031021 (2016).

    Google Scholar 

  19. O’Brien, T .E., Diez, M. & Beenakker, C. W. J. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal. Phys. Rev. Lett. 116, 236401 (2016).

    Article  Google Scholar 

  20. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  CAS  Google Scholar 

  21. Xu, Y. et al. Structured Weyl points in spin-orbit coupled fermionic superfluids. Phys. Rev. Lett. 115, 265304 (2015).

    Article  Google Scholar 

  22. McCormick, T .M., Kimchi, I. & Trivedi, N. Minimal models for topological Weyl semimetals. Phys. Rev. B 95, 075133 (2017).

    Article  Google Scholar 

  23. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    Article  CAS  Google Scholar 

  24. Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

    Article  CAS  Google Scholar 

  25. Ferreiros, Y., Zyuzin, A. A. & Bardarson, J. H. Anomalous Nernst and thermal Hall effects in tilted Weyl semimetals. Phys. Rev. B 96, 115202 (2017).

    Article  Google Scholar 

  26. Saha, S. & Tewari, S. Anomalous Nernst effect in type-II Weyl semimetals. Preprint at http://arxiv.org/abs/1707.04117 (2017).

  27. McCormick, T. M., McKay, R. C. & Trivedi, N. The semiclassical theory of anomalous transport in type-II topological Weyl semimetals. Preprint at http://arxiv.org/abs/1707.06222 (2017).

  28. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  29. Belopolski, I. et al. Criteria for directly detecting topological Fermi arcs in Weyl semimetals. Phys. Rev. Lett. 116, 066802 (2016).

    Article  Google Scholar 

  30. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  31. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano. 7, 669–712 (2012).

    Google Scholar 

  32. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  33. Raub, C. J. et al. The occurrence of superconductivity in sulfides, selenides, tellurides of Pt-group metals. J. Phys. Chem. Solids 26, 2051–2057 (1965).

    Article  CAS  Google Scholar 

  34. Noh, H.-J. et al. Experimental realization of type-II Dirac fermions in a PdTe2 superconductor. Phys. Rev. Lett. 119, 016401 (2017).

    Article  Google Scholar 

  35. Fei, F. et al. Nontrivial Berry phase and type II Dirac transport in layered material PdTe2 . Phys. Rev. B 96, 041201(R) (2017).

    Article  Google Scholar 

  36. Yan, L. et al. Identification of topological surface state in PdTe2 superconductor by angle-resolved photoemission spectroscopy. Chin. Phys. Lett. 32, 067303 (2015).

    Article  Google Scholar 

  37. Xu, S.-Y. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2015).

    Article  CAS  Google Scholar 

  38. Yi, H. et al. Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2 . Sci. Rep. 4, 6106 (2014).

    Article  CAS  Google Scholar 

  39. Chang, T.-R. et al. Type-II topological Dirac semimetals: theory and materials prediction (VAl3 family). Preprint at http://arxiv.org/abs/1606.07555 (2016).

  40. Zhang, P. et al. A precise method for visualizing dispersive features in image plots. Rev. Sci. Instrum. 82, 043712 (2011).

    Article  CAS  Google Scholar 

  41. Guo, G. Y. & Liang, W. Y. The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2 . J. Phys. C: Solid State Phys. 19, 995–1008 (1986).

    Article  CAS  Google Scholar 

  42. Yan, M. et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2 . Nat. Commun. 8, 257 (2017).

    Article  Google Scholar 

  43. Huang, H., Zhou, S. & Duan, W. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys. Rev. B. 94, 121117(R) (2016).

    Article  Google Scholar 

  44. Cao, H. et al. Origin of the phase transition in IrTe2: structural modulation and local bonding instability. Phys. Rev. B. 88, 115122 (2013).

    Article  Google Scholar 

  45. Fang, A. F. et al. Structural phase transition in IrTe2: a combined study of optical spectroscopy and band structure calculations. Sci. Rep. 3, 1153 (2013).

    Article  CAS  Google Scholar 

  46. Riley, J. M. et al. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat. Phys. 10, 835–839 (2014).

    Article  CAS  Google Scholar 

  47. Riley, J. M. et al. Negative electronic compressibility and tunable spin splitting in WSe2 . Nat. Nano. 10, 1043–1047 (2015).

    Article  CAS  Google Scholar 

  48. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves in metallic layered transition-metal dichalcogenides. Phys. Rev. Lett. 32, 882–885 (1974).

    Article  CAS  Google Scholar 

  49. Borisenko, S. V. et al. Pseudogap and charge density waves in two dimensions. Phys. Rev. Lett. 100, 196402 (2008).

    Article  CAS  Google Scholar 

  50. Yokoya, T. et al. Fermi surface sheet-dependent superconductivity in 2H-NbSe2 . Science 294, 2518–2520 (2001).

    Article  CAS  Google Scholar 

  51. Bawden, L. et al. Spin-valley locking in the normal state of a transition-metal dichalcogenide superconductor. Nat. Commun. 7, 11711 (2016).

    Article  CAS  Google Scholar 

  52. Balaha, P. et al. WIEN2K package, Version 13.1 (2013).

  53. Souza, I. et al. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B. 65, 035109 (2001).

    Article  Google Scholar 

  54. Mostofi, A. A. et al. Wannier90: a tool for obtaining maximally localized Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  CAS  Google Scholar 

  55. Kunes, J. et al. WIEN2WANNIER: from linearized augmented plane waves to maximally localized Wannier functions. Comput. Phys. Commun. 181, 1888–1895 (2010).

    Article  CAS  Google Scholar 

  56. Salter, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    Article  Google Scholar 

  57. Bigi, C. et al. Very efficient spin polarization analysis (VESPA): new exchange scattering-based setup for spin-resolved ARPES at APE-NFFA beamline at Elettra. J. Synchrotron Radiat. 24, 750–756 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Arita and N. Nagaosa for useful discussions and feedback and F. Bertran and P. Le Fèvre for ongoing technical support of the CASIOPEE beam line at SOLEIL. We gratefully acknowledge support from the CREST, JST (Nos JPMJCR16F1 and JPMJCR16F2), the Leverhulme Trust, the Engineering and Physical Sciences Research Council, UK (Grant Nos EP/M023427/1 and EP/I031014/1), the Royal Society, the Japan Society for Promotion of Science (Grant-in-Aid for Scientific Research (S); No. 24224009 and (B); No. 16H03847), the International Max-Planck Partnership for Measurement and Observation at the Quantum Limit, Thailand Research Fund and Suranaree University of Technology (Grant No. BRG5880010) and the Research Council of Norway through its Centres of Excellence funding scheme, project number 262633, QuSpin, and through the Fripro program, project number 250985 FunTopoMat. This work has been partly performed in the framework of the nanoscience foundry and fine analysis (NFFA-MIUR Italy, Progetti Internazionali) facility. B.-J. Y. was supported by the Institute for Basic Science in Korea (Grant No. IBS-R009-D1), Research Resettlement Fund for the new faculty of Seoul National University, and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 0426-20150011). O.J.C., L.B., J.M.R. and V.S. acknowledge EPSRC for PhD studentship support through grant Nos EP/K503162/1, EP/G03673X/1, EP/L505079/1 and EP/L015110/1. I.M. acknowledges PhD studentship support from the IMPRS for the Chemistry and Physics of Quantum Materials. We thank Diamond Light Source (via Proposal Nos SI9500, SI12469, SI13438 and SI14927) Elettra, SOLEIL, and Max-Lab synchrotrons for access to Beamlines I05, APE, CASSIOPEE, and i3, respectively, that contributed to the results presented here.

Author information

Authors and Affiliations

Authors

Contributions

M.S.B. and B.J.Y. performed the theoretical calculations. The experimental data were measured by O.J.C., J.Feng, L.B., J.M.R., I.M., F.M., V.S., D.B., S.P.C., M.J., J.W.W., T.E., W.M. and P.D.C.K, and analysed by O.J.C.; M.L., T.B., J.Fujii, I.V., J.E.R., T.K.K. and M.H. maintained the ARPES/spin-resolved ARPES end stations and provided experimental support. K.O., M.A. and T.S. synthesized the measured samples. P.D.C.K., O.J.C. and M.S.B. wrote the manuscript with input and discussion from co-authors. P.D.C.K. and M.S.B. were responsible for overall project planning and direction.

Corresponding authors

Correspondence to M. S. Bahramy or P. D. C. King.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahramy, M., Clark, O., Yang, BJ. et al. Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides. Nature Mater 17, 21–28 (2018). https://doi.org/10.1038/nmat5031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing