Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Instilling defect tolerance in new compounds

The properties of semiconducting solids are determined by the imperfections they contain. Established physical phenomena can be converted into practical design principles for optimizing defects and doping in a broad range of technology-enabling materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Killer defects.
Figure 2: Defect tolerance.

References

  1. Stoneham, A. M. Theory of Defects in Solids (Oxford Univ. Press, 1975).

  2. Pantelides, S. T. Rev. Mod. Phys. 50, 797–858 (1978).

    Article  CAS  Google Scholar 

  3. Koster, G. F. & Slater, J. C. Phys. Rev. 95, 1167–1176 (1954).

    Article  Google Scholar 

  4. Baraff, G. A. & Schlüter, M. Phys. Rev. Lett. 41, 892–895 (1978).

    Article  CAS  Google Scholar 

  5. Lindefelt, U. & Zunger, A. Phys. Rev. B 24, 5913–5931 (1981).

    Article  CAS  Google Scholar 

  6. Lany, S. & Zunger, A. Phys. Rev. B 78, 235104 (2008).

    Article  Google Scholar 

  7. Freysoldt, C. et al. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  8. Zhang, S. B. & Northrup, J. E. Phys. Rev. Lett. 67, 2339–2342 (1991).

    Article  CAS  Google Scholar 

  9. Wei, S.-H. Comput. Mater. Sci. 30, 337–348 (2004).

    Article  CAS  Google Scholar 

  10. Hart, G. L. W. & Zunger, A. Phys. Rev. Lett. 87, 275508 (2001).

    Article  CAS  Google Scholar 

  11. Wang, N. et al. Phys. Rev. B 89, 045142 (2014).

    Article  Google Scholar 

  12. Yu, Y. G., Zhang, X. & Zunger, A. Phys. Rev. B 95, 085201 (2017).

    Article  Google Scholar 

  13. Chen, S., Walsh, A., Gong, X.-G. & Wei, S.-H. Adv. Mater. 25, 1522–1539 (2013).

    Article  Google Scholar 

  14. Zunger, A. Appl. Phys. Lett. 83, 57–59 (2003).

    Article  CAS  Google Scholar 

  15. Walukiewicz, W. Physica B 302–303, 123–134 (2001).

    Article  Google Scholar 

  16. Walukiewicz, W. Phys. Rev. B 37, 4760–4763 (1988).

    Article  CAS  Google Scholar 

  17. Zhang, S. B., Wei, S.-H. & Zunger, A. J. Appl. Phys. 83, 3192–3196 (1998).

    Article  CAS  Google Scholar 

  18. Zhang, S. B., Wei, S.-H. & Zunger, A. Phys. Rev. Lett. 84, 1232–1235 (2000).

    Article  CAS  Google Scholar 

  19. Walsh, A. et al. Chem. Mater. 25, 2924–2926 (2013).

    Article  CAS  Google Scholar 

  20. Lany, S. & Zunger, A. Phys. Rev. Lett. 98, 045501 (2007).

    Article  Google Scholar 

  21. Horwat, D. et al. J. Phys. D: Appl. Phys. 43, 132003 (2010).

    Article  Google Scholar 

  22. Buckeridge, J., Scanlon, D. O., Walsh, A. & Catlow, C. R. A. Comput. Phys. Commun. 185, 330–338 (2014).

    Article  CAS  Google Scholar 

  23. Mazin, I. I. et al. Nat. Commun. 5, 4261 (2014).

    Article  CAS  Google Scholar 

  24. Yang, W. S. et al. Science 356, 1376–1379 (2017).

    Article  CAS  Google Scholar 

  25. Buckeridge, J. et al. Phys. Rev. Lett. 114, 016405 (2015).

    Article  CAS  Google Scholar 

  26. Neumark, G. F. Mat. Sci. Eng. R 21, 1–46 (1997).

    Article  Google Scholar 

  27. Fioretti, A. N. et al. Adv. Electron. Mater. 3, 1600544 (2017).

    Article  Google Scholar 

  28. Zhang, S. B., Wei, S.-H., Zunger, A. & Katayama-Yoshida, H. Phys. Rev. B 57, 9642–9656 (1998).

    Article  CAS  Google Scholar 

  29. Walsh, A., Payne, D. J., Egdell, R. G. & Watson, G. W. Chem. Soc. Rev. 40, 4455–4463 (2011).

    Article  CAS  Google Scholar 

  30. Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. MRS Commun. 5, 265–275 (2015).

    Article  CAS  Google Scholar 

  31. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Angew. Chemie Int. Ed. 54, 1791–1794 (2015).

    Article  CAS  Google Scholar 

  32. Steirer, K. X. et al. ACS Energy Lett. 1, 360–366 (2016).

    Article  CAS  Google Scholar 

  33. Fröhlich, H. Adv. Phys. 3, 325–361 (1954).

    Article  Google Scholar 

  34. Stoneham, A. M. et al. J. Phys. Condens. Matter 19, 255208 (2007).

    Article  Google Scholar 

  35. Perkins, J. D. et al. Phys. Rev. B 84, 205207 (2011).

    Article  Google Scholar 

  36. Zhang, S. B., Wei, S.-H. & Zunger, A. Phys. Rev. Lett. 78, 4059–4062 (1997).

    Article  CAS  Google Scholar 

  37. Segev, D. & Wei, S.-H. Phys. Rev. Lett. 91, 126406 (2003).

    Article  CAS  Google Scholar 

  38. Sokol, A. A. et al. Faraday Discuss. 134, 267–282 (2007).

    Article  CAS  Google Scholar 

  39. Lyons, J. L., Janotti, A. & Van de Walle, C. G. Appl. Phys. Lett. 95, 252105 (2009).

    Article  Google Scholar 

  40. Li, J., Wei, S.-H., Li, S.-S. & Xia, J.-B. Phys. Rev. B 74, 081201 (2006).

    Article  Google Scholar 

  41. Buckeridge, J., Jevdokimovs, D., Catlow, C. R. A. & Sokol, A. A. Phys. Rev. B 94, 180101 (2016).

    Article  Google Scholar 

  42. Lejaeghere, K. et al. Science 351, aad3000 (2016).

    Article  Google Scholar 

  43. Kumagai, Y. & Oba, F. Phys. Rev. B 89, 195205 (2014).

    Article  Google Scholar 

  44. Goyal, A., Gorai, P., Peng, H., Lany, S. & Stevanović, V. Comput. Mater. Sci. 130, 1–9 (2017).

    Article  Google Scholar 

  45. Broberg, D. et al. Preprint at http://arxiv.org/abs/1611.07481 (2016).

  46. Medasani, B. et al. npj Comput. Mater. 2, 1 (2016).

    Article  CAS  Google Scholar 

  47. Berger, D. et al. J. Chem. Phys. 141, 024105 (2014).

    Article  Google Scholar 

  48. Materials Genome Initiative for Global Competitiveness (National Science and Technology Council, 2011).

  49. Gautier, R. et al. Nat. Chem. 7, 308–316 (2015).

    Article  CAS  Google Scholar 

  50. Butler, K. T., Frost, J. M., Skelton, J. M., Svane, K. L. & Walsh, A. Chem. Soc. Rev. 45, 6138–6146 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.W. acknowledges support from the Royal Society, the EPSRC (grant no. EP/K016288/1) and the EU Horizon2020 Framework (STARCELL, grant no. 720907). A.Z. is supported by the US Department of Energy, Office of Science, Basic Energy Science, MSE Division under grant no. DE-FG02-13ER46959, and by EERE Sun Shot initiative under DE-EE0007366.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aron Walsh or Alex Zunger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, A., Zunger, A. Instilling defect tolerance in new compounds. Nature Mater 16, 964–967 (2017). https://doi.org/10.1038/nmat4973

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing