Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanodiffusion in electrocatalytic films

Abstract

In the active interest aroused by electrochemical reactions’ catalysis, related to modern energy challenges, films deposited on electrodes are often preferred to homogeneous catalysts. A particularly promising variety of such films, in terms of efficiency and selectivity, is offered by sprinkling catalytic nanoparticles onto a conductive network. Coupled with the catalytic reaction, the competitive occurrence of various modes of substrate diffusion—diffusion toward nanoparticles (‘nanodiffusion’) against film linear diffusion and solution linear diffusion—is analysed theoretically. It is governed by a dimensionless parameter that contains all the experimental factors, thus allowing one to single out the conditions in which nanodiffusion is the dominant mode of mass transport. These theoretical predictions are illustrated experimentally by proton reduction on a mixture of platinum nanoparticles and carbon dispersed in a Nafion film deposited on a glassy carbon electrode. The density of nanoparticles and the scan rate are used as experimental variables to test the theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the electrocatalytic film.
Figure 2: Dimensionless CV responses as a function of the competition parameter, λ.
Figure 3: Nanodiffusion control ().
Figure 4: Proton reduction into dihydrogen in 10−3 M HClO4 aqueous solution at 1-nm-radius nanoparticles dispersed in a film prepared from a commercial 0.1 Pt/ 0.9 C suspension in a Nafion–H2O 1:1 mixture deposited on a 5-mm glassy carbon electrode (S = 0.196 cm2).

Similar content being viewed by others

References

  1. Hoffert, M. I. et al. Energy implications of future stabilization of atmospheric CO2 content. Nature 385, 881–884 (1998).

    Article  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  3. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

    Article  CAS  Google Scholar 

  4. Nocera, D. G. Chemistry of personalized solar energy. Inorg. Chem. 48, 10001–10017 (2009).

    Article  CAS  Google Scholar 

  5. Abbott, D. Keeping the energy debate clean: how do we supply the world’s energy needs? Proc. IEEE 98, 42–66 (2010).

    Article  CAS  Google Scholar 

  6. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  7. Artero, V. & Fontecave, M. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338–2356 (2013).

    Article  CAS  Google Scholar 

  8. Li, F. et al. Scanning electrochemical microscopy of redox-mediated hydrogen evolution catalyzed by two-dimensional assemblies of palladium nanoparticles. J. Phys. Chem. C 112, 9686–9694 (2008).

    Article  CAS  Google Scholar 

  9. Bard, A. J. Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: the challenge. J. Am. Chem. Soc. 132, 7559–7567 (2010).

    Article  CAS  Google Scholar 

  10. Hutton, L. A. et al. Electrodeposition of nickel hydroxide nanoparticles on boron-doped diamond electrodes for oxidative electrocatalysis. J. Phys. Chem. C 115, 1649–1658 (2011).

    Article  CAS  Google Scholar 

  11. Koper, M. T. M. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3, 2054–2073 (2011).

    Article  CAS  Google Scholar 

  12. Ye, H., Park, H. S. & Bard, A. J. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 115, 12464–12470 (2011).

    Article  CAS  Google Scholar 

  13. Kleijn, S. E. F., Lai, S. C. S., Koper, M. T. M. & Unwin, P. R. Electrochemistry of nanoparticles. Angew. Chem. Int. Ed. 53, 3558–3586 (2014).

    Article  CAS  Google Scholar 

  14. Zhang, Z.-C., Xu, B. & Wang, X. Engineering nanointerfaces for nanocatalysis. Chem. Soc. Rev. 43, 7870–7886 (2014).

    Article  CAS  Google Scholar 

  15. Sharma, N., Ojha, H., Bharadwaj, A., Pathak, D. P. & Sharma, R. K. Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 5, 53381–53403 (2015).

    Article  CAS  Google Scholar 

  16. Kumar, B. et al. New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction. Catal. Today 270, 19–30 (2016).

    Article  CAS  Google Scholar 

  17. Lu, Q. & Jiao, F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29, 439–456 (2016).

    Article  CAS  Google Scholar 

  18. Vielstich, W., Gasteiger, H. A., Lamm, A. & Yokokawa, H. Handbook of Fuel Cells (John Wiley, 2010).

    Book  Google Scholar 

  19. Paulus, U. A., Schmidt, T. J., Gasteiger, H. A. & Behm, R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001).

    Article  CAS  Google Scholar 

  20. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    Article  CAS  Google Scholar 

  21. Costentin, C. & Saveant, J.-M. Catalysis at the nanoscale may change selectivity. Proc. Natl Acad. Sci. USA 113, 11756–11758 (2016).

    Article  CAS  Google Scholar 

  22. Bobbert, P. A., Wind, M. M. & Vlieger, J. Diffusion to an assembly of slowly growing particles on a substrate. Physica A 146, 69–88 (1987).

    Article  Google Scholar 

  23. Gloaguen, F. & Durand, R. Simulations of PEFC cathodes: an effectiveness factor approach. J. Appl. Electrochem. 27, 1029–1035 (1997).

    Article  CAS  Google Scholar 

  24. Antoine, O., Bultel, Y., Durand, R. & Ozil, P. Electrocatalysis, diffusion and ohmic drop in PEMFC: particle size and spatial discrete distribution effects. Electrochim. Acta 43, 3681–3691 (1998).

    Article  CAS  Google Scholar 

  25. Bultel, Y., Ozil, P. & Durand, R. Modelling of mass transfer within the PEM fuel cell active layer: limitations at the particle level. J. Appl. Electrochem. 29, 1025–1033 (1999).

    Article  CAS  Google Scholar 

  26. Lyons, M. E. G., McCormack, D. E., Smyth, O. & Bartlett, P. N. Transport and kinetics in multicomponent chemically modified electrodes. Faraday Discuss. 88, 139–149 (1989).

    Article  CAS  Google Scholar 

  27. Lyons, M. E. G., McCormack, D. E. & Bartlett, P. N. Microheterogeneous catalysis in modified electrodes. J. Electroanal. Chem. 261, 51–59 (1989).

    Article  CAS  Google Scholar 

  28. Lyons, M. E. G. & Bartlett, P. N. Microheterogeneous catalysis in modified electrodes: part 2. Electron transfer mediator/catalyst composites. J. Electroanal. Chem. 316, 1–22 (1991).

    Article  CAS  Google Scholar 

  29. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (John Wiley, 2001).

    Google Scholar 

  30. Savéant, J.-M. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry Ch. 2 & 6 (John Wiley, 2006).

    Book  Google Scholar 

  31. Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002).

    Article  CAS  Google Scholar 

  32. Handbook of Chemistry and Physics 81st edn, 5–95 and 6–191 (CRC, 2000).

  33. Sel, O. et al. Determination of the diffusion coefficient of protons in Nafion thin films by ac-electrogravimetry. Langmuir 29, 13655–13660 (2013).

    Article  CAS  Google Scholar 

  34. Andrieux, C. P., Costentin, C., Di Giovanni, C., Savéant, J.-M. & Tard, C. Conductive mesoporous catalytic films. Current distortion and performance degradation by dual-phase ohmic drop effects. Analysis and remedies. J. Phys. Chem. C 120, 21263–21271 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-12-JS08-0004.

Author information

Authors and Affiliations

Authors

Contributions

C.C., J.-M.S. and C.T. designed the experiments. C.D.G. and C.T. performed the electrochemical measurements. M.G. conducted the microscopy measurements. C.C. and J.-M.S. wrote the manuscript, which all authors edited.

Corresponding authors

Correspondence to Cyrille Costentin, Jean-Michel Savéant or Cédric Tard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costentin, C., Di Giovanni, C., Giraud, M. et al. Nanodiffusion in electrocatalytic films. Nature Mater 16, 1016–1021 (2017). https://doi.org/10.1038/nmat4968

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing