Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic chemical expansion of thin-film non-stoichiometric oxides at extreme temperatures

Abstract

Actuator operation in increasingly extreme and remote conditions requires materials that reliably sense and actuate at elevated temperatures, and over a range of gas environments. Design of such materials will rely on high-temperature, high-resolution approaches for characterizing material actuation in situ. Here, we demonstrate a novel type of high-temperature, low-voltage electromechanical oxide actuator based on the model material PrxCe1−xO2−δ (PCO). Chemical strain and interfacial stress resulted from electrochemically pumping oxygen into or out of PCO films, leading to measurable film volume changes due to chemical expansion. At 650 °C, nanometre-scale displacement and strain of >0.1% were achieved with electrical bias values <0.1 V, low compared to piezoelectrically driven actuators, with strain amplified fivefold by stress-induced structural deflection. This operando measurement of films ‘breathing’ at second-scale temporal resolution also enabled detailed identification of the controlling kinetics of this response, and can be extended to other electrochemomechanically coupled oxide films at extreme temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic chemical expansion upon oscillating electrical bias.
Figure 2: Sample frequency response to expanding Pr0.1Ce0.9O2−δ film.
Figure 3: Factors controlling oxide film breathing.
Figure 4: Schematic of processes occurring during direct chemical-expansion measurement.

Similar content being viewed by others

References

  1. Gelhaus, F. E. & Roman, H. T. Robot applications in nuclear power plants. Prog. Nucl. Energy 23, 1–33 (1990).

    Article  Google Scholar 

  2. Amrhein, M., Wells, J. & Baudendistel, T. Design of a High-Temperature Utility Electromechanical Actuator SAE Technical Paper (SAE International, 2012); http://dx.doi.org/10.4271/2012-01-2214

  3. Sherrit, S. Smart material/actuator needs in extreme environments in space. In Proc. SPIE Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics Vol. 5761 335–346 (SPIE, 2005).

    Chapter  Google Scholar 

  4. Damjanovic, D. Materials for high temperature piezoelectric transducers. Curr. Opin. Solid State Mater. Sci. 3, 469–473 (1998).

    Article  CAS  Google Scholar 

  5. Zhang, S. & Yu, F. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011).

    Article  CAS  Google Scholar 

  6. Bishop, S. R. et al. Chemical expansion: implications for electrochemical energy storage and conversion devices. Annu. Rev. Mater. Res. 44, 205–239 (2014).

    Article  CAS  Google Scholar 

  7. Chen, D. & Tuller, H. L. Voltage-controlled nonstoichiometry in oxide thin films: Pr0.1Ce0.9O2−δ case study. Adv. Funct. Mater. 24, 7638–7644 (2014).

    Article  CAS  Google Scholar 

  8. Bishop, S. R., Stefanik, T. S. & Tuller, H. L. Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2−δ . Phys. Chem. Chem. Phys. 13, 10165–10173 (2011).

    Article  CAS  Google Scholar 

  9. Lu, Q. & Yildiz, B. Voltage-controlled topotactic phase transition in thin-film SrCoOx monitored by in situ X-ray diffraction. Nano Lett. 16, 1186–1193 (2016).

    Article  CAS  Google Scholar 

  10. Sheldon, B. W., Mandowara, S. & Rankin, J. Grain boundary induced compositional stress in nanocrystalline ceria films. Solid State Ion. 233, 38–46 (2013).

    Article  CAS  Google Scholar 

  11. Hopper, E. M. et al. Oxygen exchange in La0.6Sr0.4Co0.2Fe0.8O3−δ thin-film heterostructures under applied electric potential. J. Phys. Chem. C 119, 19915–19921 (2015).

    Article  CAS  Google Scholar 

  12. Hiraiwa, C. et al. Chemical expansion and change in lattice constant of Y-doped BaZrO3 by hydration/dehydration reaction and final heat-treating temperature. J. Am. Ceram. Soc. 96, 879–884 (2013).

    Article  CAS  Google Scholar 

  13. Grande, T., Tolchard, J. R. & Selbach, S. M. Anisotropic thermal and chemical expansion in Sr-substituted LaMnO3+δ: implications for chemical strain relaxation. Chem. Mater. 24, 338–345 (2012).

    Article  CAS  Google Scholar 

  14. Tomkiewicz, A. C., Tamimi, M. A., Huq, A. & McIntosh, S. Evidence for the low oxygen stoichiometry of cubic Ba0.5Sr0.5Co0.5Fe0.5O3−δ from in-situ neutron diffraction. Solid State Ion. 253, 27–31 (2013).

    Article  CAS  Google Scholar 

  15. McIntosh, S., Vente, J. F., Haije, W. G., Blank, D. H. A. & Bouwmeester, H. J. M. Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3−δ measured by in situ neutron diffraction. Chem. Mater. 18, 2187–2193 (2006).

    Article  CAS  Google Scholar 

  16. Bishop, S. R., Tuller, H. L., Kuru, Y. & Yildiz, B. Chemical expansion of nonstoichiometric Pr0.1Ce0.9O2−δ: correlation with defect equilibrium model. J. Eur. Ceram. Soc. 31, 2351–2356 (2011).

    Article  CAS  Google Scholar 

  17. Kalinin, S. V. & Balke, N. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: status and perspectives. Adv. Mater. 22, E193–E209 (2010).

    Article  CAS  Google Scholar 

  18. Kumar, A., Ciucci, F., Morozovska, A. N., Kalinin, S. V. & Jesse, S. Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3, 707–713 (2011).

    Article  CAS  Google Scholar 

  19. Balke, N. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotech. 5, 749–754 (2010).

    Article  CAS  Google Scholar 

  20. Bishop, S. R., Stefanik, T. S. & Tuller, H. L. Defects and transport in PrxCe1−xO2−δ: composition trends. J. Mater. Res. 27, 2009–2016 (2012).

    Article  CAS  Google Scholar 

  21. Marrocchelli, D., Bishop, S. R., Tuller, H. L. & Yildiz, B. Understanding chemical expansion in non-stoichiometric oxides: ceria and zirconia case studies. Adv. Funct. Mater. 22, 1958–1965 (2012).

    Article  CAS  Google Scholar 

  22. Chen, D., Bishop, S. R. & Tuller, H. L. Non-stoichiometry in oxide thin films: a chemical capacitance study of the praseodymium-cerium oxide system. Adv. Funct. Mater. 23, 2168–2174 (2013).

    Article  CAS  Google Scholar 

  23. Seborg, D. E., Edgar, T. F., Mellichamp, D. A. & Doyle, F. J. III Process Dynamics and Control (John Wiley & Sons, 2011).

    Google Scholar 

  24. Chen, D. Characterization and Control of Non-Stoichiometry in Pr 0.1 Ce 0.9 O 2− δ Thin Films: Correlation with SOFC Electrode Performance PhD thesis, Massachusetts Institute of Technology (2014).

  25. Manning, P. S., Sirman, J. D. & Kilner, J. A. Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure. Solid State Ion. 93, 125–132 (1997).

    Article  Google Scholar 

  26. Bishop, S. R. et al. Impact of size scale on electro-chemo-mechanical coupling properties in MIECs: bulk and thin film (Pr, Ce)O2−δ . ECS Trans. 61, 31–36 (2014).

    Article  CAS  Google Scholar 

  27. Korobko, R. et al. Giant electrostriction in Gd-doped ceria. Adv. Mater. 24, 5857–5861 (2012).

    Article  CAS  Google Scholar 

  28. Korobko, R. et al. In-situ extended X-ray absorption fine structure study of electrostriction in Gd doped ceria. Appl. Phys. Lett. 106, 042904 (2015).

    Article  Google Scholar 

  29. Cheng, C. & Ngan, A. H. W. Reversible electrochemical actuation of metallic nanohoneycombs induced by pseudocapacitive redox processes. ACS Nano 9, 3984–3995 (2015).

    Article  CAS  Google Scholar 

  30. Kim, J. J., Bishop, S. R., Thompson, N., Kuru, Y. & Tuller, H. L. Optically derived energy band gap states of Pr in ceria. Solid State Ion. 225, 198–200 (2012).

    Article  CAS  Google Scholar 

  31. Jung, W., Kim, J. J. & Tuller, H. L. Investigation of nanoporous platinum thin films fabricated by reactive sputtering: application as micro-SOFC electrode. J. Power Sources 275, 860–865 (2015).

    Article  CAS  Google Scholar 

  32. Maloney, J. M., Lehnhardt, E., Long, A. F. & Van Vliet, K. J. Mechanical fluidity of fully suspended biological cells. Biophys. J. 105, 1767–1777 (2013).

    Article  CAS  Google Scholar 

  33. Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models (McGraw-Hill, 2005).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering under award number DE-SC0002633. J.G.S. acknowledges support from the DOE-SCGF Fellowship Program administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. J.J.K. thanks the Kwanjeong Educational Foundation for fellowship support. The authors acknowledge C. S. Kim for additional sample preparation and F. Frankel for assistance with figure preparation. This work made use of the Shared Experimental Facilities supported in part by the MRSEC Program of the National Science Foundation under award number DMR-1419807.

Author information

Authors and Affiliations

Authors

Contributions

J.G.S., J.J.K., H.L.T. and K.J.V.V. designed the study. J.G.S. developed the dynamic expansion measurement technique and conducted displacement measurements and data analysis. J.J.K. deposited films and conducted impedance measurements, structural characterization and imaging. S.R.B. developed analysis methods and relationships between impedance and mechanical results. J.M.M. designed LabView signal analysis code for detecting expansion phase lag and amplitude. D.C. contributed to sample design and application of the defect model. J.F.S. contributed to frequency-based measurement experimental design. J.G.S., J.J.K., S.R.B., H.L.T. and K.J.V.V. wrote the manuscript.

Corresponding author

Correspondence to Krystyn J. Van Vliet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swallow, J., Kim, J., Maloney, J. et al. Dynamic chemical expansion of thin-film non-stoichiometric oxides at extreme temperatures. Nature Mater 16, 749–754 (2017). https://doi.org/10.1038/nmat4898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing